Adsorption-based carbon capture has been recognized as an attractive method for mitigating global warming.Metal–organic frameworks(MOFs)are promising candidate adsorbents for this purpose due to their high adsorption...Adsorption-based carbon capture has been recognized as an attractive method for mitigating global warming.Metal–organic frameworks(MOFs)are promising candidate adsorbents for this purpose due to their high adsorption uptake and selectivity for carbon dioxide.However,in real-world applications,such as direct air capture,the presence of moisture in the feed gas may pose a grand challenge for CO_(2)adsorption in MOFs.This paper aims to address the issue of water–CO_(2)co-adsorption in MOFs and present screening criteria for selecting MOFs that preferentially adsorb CO_(2)under humid conditions.First,we uncover a comprehensive overview of CO_(2)–water co-adsorption characteristics of various MOFs.Then,the high-throughput screening methods are summarized.Both computational and experimental efforts have been dedicated to identify the promising MOFs for humid CO_(2)capture.According to the screening results and adsorption mechanism,the optimal preparation strategies are proposed tomodulate the effect of water on CO_(2)uptake in MOFs.Finally,current MOF-based CO_(2)capture prototypes are presented to evaluate their practical feasibility and performance.This work could offer valuable guidance for the development and application of MOFs for CO_(2)capture in the presence of water and inspire further research in this field.展开更多
基金National Key Research and Development Program of China,Grant/Award Numbers:2022YFB4101700,2022YFE0128600National Natural Science Foundation of China,Grant/Award Numbers:52276022,22278365,22225802Basic Research Funds for the Central Government‘Innovative Team of Zhejiang University’,Grant/Award Number:2022FZZX01-09。
文摘Adsorption-based carbon capture has been recognized as an attractive method for mitigating global warming.Metal–organic frameworks(MOFs)are promising candidate adsorbents for this purpose due to their high adsorption uptake and selectivity for carbon dioxide.However,in real-world applications,such as direct air capture,the presence of moisture in the feed gas may pose a grand challenge for CO_(2)adsorption in MOFs.This paper aims to address the issue of water–CO_(2)co-adsorption in MOFs and present screening criteria for selecting MOFs that preferentially adsorb CO_(2)under humid conditions.First,we uncover a comprehensive overview of CO_(2)–water co-adsorption characteristics of various MOFs.Then,the high-throughput screening methods are summarized.Both computational and experimental efforts have been dedicated to identify the promising MOFs for humid CO_(2)capture.According to the screening results and adsorption mechanism,the optimal preparation strategies are proposed tomodulate the effect of water on CO_(2)uptake in MOFs.Finally,current MOF-based CO_(2)capture prototypes are presented to evaluate their practical feasibility and performance.This work could offer valuable guidance for the development and application of MOFs for CO_(2)capture in the presence of water and inspire further research in this field.