期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design
1
作者 Guohua zhang Xiaohui Wen +2 位作者 Yuheng Gao renyuan zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries Li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
下载PDF
氟化高浓电解液实现无水氟化铜正极的可逆循环
2
作者 戴一铭 刘旭阳 +5 位作者 伍旺炎 黄瑛 王腾锐 宋振友 张任远 罗巍 《Science China Materials》 SCIE EI CAS CSCD 2023年第8期3039-3045,共7页
无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化... 无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF_(2)正极的可逆循环.采用氟化高浓电解液后,CuF_(2)正极的容量在30次循环后仍保有228 mA h g^(−1),是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF_(2)正极的可逆充放电. 展开更多
关键词 锂电池正极材料 电池容量 可逆循环 电解液 高比容量 能量密度 工作电压 碳酸酯
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部