Four supported catalysts,nickel and ruthenium on a HZSM-5 support,were prepared by equal volume impregnation and in-situ decomposition of carbonyl nickel.The properties of catalysts were investigated by catalytic hydr...Four supported catalysts,nickel and ruthenium on a HZSM-5 support,were prepared by equal volume impregnation and in-situ decomposition of carbonyl nickel.The properties of catalysts were investigated by catalytic hydro-conversion of 2,2′-dinaphthyl ether as the model compound and extraction residue of Naomaohu lignite as the sample under an initial H2 pressure of 5 MPa and temperature at 150℃.According to the catalytic hydroconversion results of the model compound,Ni−Ru/HZSM5 exhibited the best catalytic performance.It not only activated H2 into H…H,but also further heterolytically split H…H into immobile H‒attached on the acidic centers of Ni−Ru/HZSM-5 and relatively mobile H+.Catalytic hydro-conversion of the extraction residue from Naomaohu lignite was further examined over the optimized catalyst,Ni−Ru/HZSM-5.Detailed molecular compositions of products from the extraction residue with and without hydrogenation were characterized by Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry.The analytical results showed that the oxygencontaining functional groups in products of hydrogenated extraction residue were obviously reduced after the catalytic treatment.The relative content of oxygenates in the product with catalytic treatment was 18.57%lower than that in the product without catalytic treatment.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21676293)the Natural Science Foundation of Shandong Province(Grant No.ZR2021MB115)the Key Project of Joint Fund from the National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region(Grant No.U1503293).
文摘Four supported catalysts,nickel and ruthenium on a HZSM-5 support,were prepared by equal volume impregnation and in-situ decomposition of carbonyl nickel.The properties of catalysts were investigated by catalytic hydro-conversion of 2,2′-dinaphthyl ether as the model compound and extraction residue of Naomaohu lignite as the sample under an initial H2 pressure of 5 MPa and temperature at 150℃.According to the catalytic hydroconversion results of the model compound,Ni−Ru/HZSM5 exhibited the best catalytic performance.It not only activated H2 into H…H,but also further heterolytically split H…H into immobile H‒attached on the acidic centers of Ni−Ru/HZSM-5 and relatively mobile H+.Catalytic hydro-conversion of the extraction residue from Naomaohu lignite was further examined over the optimized catalyst,Ni−Ru/HZSM-5.Detailed molecular compositions of products from the extraction residue with and without hydrogenation were characterized by Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry.The analytical results showed that the oxygencontaining functional groups in products of hydrogenated extraction residue were obviously reduced after the catalytic treatment.The relative content of oxygenates in the product with catalytic treatment was 18.57%lower than that in the product without catalytic treatment.