期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial and seasonal variation in soil respiration along a slope in a rubber plantation and a natural forest in Xishuangbanna, Southwest China 被引量:3
1
作者 ZHAO Yong-li Stefanie D.GOLDBERG +1 位作者 XU Jian-chu rhett d.harrison 《Journal of Mountain Science》 SCIE CSCD 2018年第4期695-707,共13页
Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to ru... Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO_2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest(SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements.Research was conducted over one year in Xishuangbanna during May, June, July and October 2015(wet season) and January and March 2016(dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha^(-1) yr^(-1) in natural forest and 11.7 and 5.7 Mg C ha^(-1) yr^(-1) in rubber plantation. Using a linear mixedeffects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level. 展开更多
关键词 Soil respiration Tropical rain forest Rubber plantation Land-use change Carbon cycle TRANSECT
下载PDF
Enhanced Structural Complexity Index:An Improved Index for Describing Forest Structural Complexity 被引量:1
2
作者 Philip Beckschafer Philip Mundhenk +3 位作者 Christoph Kleinn Yinqiu Ji Douglas W.Yu rhett d.harrison 《Open Journal of Forestry》 2013年第1期23-29,共7页
The horizontal distribution of stems, stand density and the differentiation of tree dimensions are among the most important aspects of stand structure. An increasing complexity of stand structure is often linked to a ... The horizontal distribution of stems, stand density and the differentiation of tree dimensions are among the most important aspects of stand structure. An increasing complexity of stand structure is often linked to a higher number of species and to greater ecological stability. For quantification, the Structural Complexity Index (SCI) describes structural complexity by means of an area ratio of the surface that is generated by connecting the tree tops of neighbouring trees to form triangles to the surface that is covered by all triangles if projected on a flat plane. Here, we propose two ecologically relevant modifications of the SCI: The degree of mingling of tree attributes, quantified by a vector ruggedness measure, and a stem density term. We investigate how these two modifications influence index values. Data come from forest inventory field plots sampled along a disturbance gradient from heavily disturbed shrub land, through secondary regrowth to mature montane rainforest stands in Mengsong, Xishuangbanna,Yunnan,China. An application is described linking structural complexity, as described by the SCI and its modified versions, to changes in species composition of insect communities. The results of this study show that the Enhanced Structural Complexity Index (ESCI) can serve as a valuable tool for forest managers and ecologists for describing the structural complexity of forest stands and is particularly valuable for natural forests with a high degree of structural complexity. 展开更多
关键词 Forest Structure Index Structural Complexity Stem Map Species Composition NMDS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部