期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tough PEG-only hydrogels with complex 3D structure enabled by digital light processing of“all-PEG”resins
1
作者 Safira Noor Anindita riccardo conti +10 位作者 Doris Zauchner Nevena Paunovi´c Wanwan Qiu Marina Green Buzhor Adva Krivitsky Zhi Luo Ralph Müller Hansjörg Grützmacher Xiao-Hua Qin Jean-Christophe Leroux Yinyin Bao 《Aggregate》 EI CAS 2023年第6期57-70,共14页
Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing appro... Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing approach for the high-resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat-assisted DLP.Instead of using aqueous solutions of photo-crosslinkable monomers,PEG macromonomer melts werefirst printed in the absence of water,resulting in bulk PEG networks.Then,post-printing swelling of the printed networks was achieved in water,producing high-fidelity 3D hydrogels with complex structures.By employing a dual-macromonomer resin containing a PEG-based four-arm macrophotoinitiator,“all-PEG”hydrogel constructs were pro-duced with compressive toughness up to 1.3 MJ m^(-3).By this approach,porous 3D hydrogel scaffolds with trabecular-like architecture were fabricated,and the scaf-fold surface supported cell attachment and the formation of a monolayer mimicking bone-lining cells.This study highlights the promises of heat-assisted DLP of PEG photopolymers for hydrogel fabrication,which may accelerate the development of 3D tissue-like constructs for regenerative medicine. 展开更多
关键词 3D printing digital light processing PEG hydrogels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部