期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Lattice approaches to packed column simulations 被引量:3
1
作者 richard Caulkin Mike Fairweather richard a. williams 《Particuology》 SCIE EI CAS CSCD 2008年第6期404-411,共8页
This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shap... This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shapes frequently used in the chemical and process engineering industries. Resulting macroscopic properties are compared with experimental data derived from both invasive and non-destructive measurement techniques. Additionally, fluid velocity distributions, through samples of the resulting bed structures, are analysed using lattice Boltzmann method (LBM) simulations and are compared against experimental data from the literature. 展开更多
关键词 Packing algorithm Bed structure Packed columns Macroscopic properties Lattice Boltzmann simulations
原文传递
Large scale manufacture of magnetic polymer particles using membranes and microfluidic devices 被引量:3
2
作者 richard a. williams 《China Particuology》 SCIE EI CAS CSCD 2007年第1期26-42,共17页
Magnetic polymer particles have found applications in diverse areas such as biomedical treatments, diagnosis and separation technology. These applications require the particles to have controlled sizes and narrow size... Magnetic polymer particles have found applications in diverse areas such as biomedical treatments, diagnosis and separation technology. These applications require the particles to have controlled sizes and narrow size distributions to gain better control and reproducibility in use. This paper reviews recent developments in the preparation of magnetic polymer particles at nano- and micro-scales by encapsulating magnetic components with dissolved or in situ formed polymers. Particle manufacture using emulsification and embedment methods produces magnetic polymer particles at micro-scale dimensions. However, the production of particles in this range using conventional emulsification methods affords very limited control over particle sizes and polydispersity. We report on alternative routes using membrane and microfluidics emulsification techniques, which have a capability to produce monodisperse emulsions and polymer microspheres (with coefficients of variation of less than 10%) in the range from submicrometer to a few 100 μm. The performance of these manufacturing methods is assessed with a view to future applications. 展开更多
关键词 Magnetic polymer particles Membrane emulsification Microfluidics emulsification Large scale manufacture
原文传递
Combining X-ray microtomography with computer simulation for analysis of granular and porous materials 被引量:23
3
作者 Roberto Moreno-atanasio richard a. williams 《Particuology》 SCIE EI CAS CSCD 2010年第2期81-99,共19页
The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the maj... The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the major applications in which computer simulations are explicitly coupled with XMT in the area of granular and porous materials. We envisage two main ways of establishing the coupling between both techniques, based on the transference or exchange of information by using physical or geometrical parameters (i.e. a parametric link through fitting to a process model) or through the direct use of3D XMT digital images (i.e. comparing image pixels and features directly). Examples of coupled applications are shown for the study of transport properties of rocks, particle packing, mechanical loading and sintering. Often, the link between XMT and computer simulations is based on visual comparisons and we conclude that the use of quantitative parameters such as the number of interparticle contacts, force networks or granule shape to link both techniques is still underrepresented in the literature. Strategies to provide a more robust and quantitative approach to optimise the information obtained from such tomography analyses are proposed. 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. 展开更多
关键词 X-ray microtomographyGranular flowComputer modellingLattice Boltzmann methodDiscrete element method
原文传递
Performance of slotted pores in particle manufacture using rotating membrane emulsification 被引量:1
4
作者 Nita aryanti richard a. williams 《Particuology》 SCIE EI CAS CSCD 2009年第2期114-120,共7页
This paper addresses the use of different slotted pores in rotating membrane emulsification technology. Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their ... This paper addresses the use of different slotted pores in rotating membrane emulsification technology. Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation. Increasing the membrane rotation speed decreased the droplet size, and the oil droplets produced were more uniform using slotted pores as compared to circular geometry. At a given rotation speed, the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity). The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity. At a given pore fluid velocity and rotation speed, pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores. This work indicates practical benefits in the use of slotted membranes over conventional methods. 展开更多
关键词 Membrane emulsification Slotted pore Tubular membrane Rotating emulsification Size control High throughput
原文传递
Use of multiscale particle simulations in the design of nuclear plant decommissioning
5
作者 richard a. williams Xiaodong Jia +1 位作者 Peter Ikin David Knight 《Particuology》 SCIE EI CAS CSCD 2011年第4期358-364,共7页
The application of a digital modelling method that can faithfully take account of three-dimensional shape and inherent physical and chemical properties of each particulate component provides an essential tool in decom... The application of a digital modelling method that can faithfully take account of three-dimensional shape and inherent physical and chemical properties of each particulate component provides an essential tool in decommissioning design. This is useful in handling of high, medium and low level radioactive waste. The processes involve making decisions on where to cut existing plant components and then how to pack these components into boxes, which are then cemented and kept for long term storage as the level of radioactive declines with time. We illustrate the utility of the method and its ability to take data at plant scale (m-scale) and then deduce behaviours at sub millimetre scale in the packed containers. A variety of modelling approaches are used as a part of this approach including cutting algorithms, geometric and dynamic (distinct element) force models, and lattice Boltzmann methods. These methods are applicable to other complex particulate systems including simulation of waste, building recycling, heap leaching and related minerals processes. The paper introduces the basic concepts of this multi-scale and multi-model approach. 展开更多
关键词 Cementation Digital packing Digipac Discrete element modelling Nuclear waste NuPlant Particle shape
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部