Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extension...Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.展开更多
基金revised date May 14,2007 This work was partly supported by the UK EPSRC Grant(No.GR/S98603/01).
文摘Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.