Charged colloidal suspensions have been used as experimental models for the study of crystal nucleation. Here we propose that the technique of template-assisted colloidal self-assembly can be used to visualize the eff...Charged colloidal suspensions have been used as experimental models for the study of crystal nucleation. Here we propose that the technique of template-assisted colloidal self-assembly can be used to visualize the effects of defect propagation in atomic crystal films produced using epitaxial growth. Templates with periodic line defects were used to grow [100]-oriented three-dimensional photonic crystals by means of the template-assisted colloidal self-assembly method, aided by capillary and gravitational forces. The defect propagation in the [100]-oriented photonic crystal was observed using scanning electron microscopy, both at the surface of the crystal and on cleaved facets. This method is useful in the understanding of defect propagation in the growth of colloidal films on templates - and the same approach may also prove useful for the understanding of atomic crystal growth on substrates with defects. Additionally, the deliberate incorporation of line defects may prove valuable as a way of introducing waveguide channels into three-dimensional photonic crystals.展开更多
A pulsed laser system is realized with graphene employed as a Q-switch.The graphene is exfoliated from its solution using an optical deposition and the optical tweezer effect.A fiber ferrule that already has the graph...A pulsed laser system is realized with graphene employed as a Q-switch.The graphene is exfoliated from its solution using an optical deposition and the optical tweezer effect.A fiber ferrule that already has the graphene deposited on it is inserted into an erbium-ytterbium laser(EYL)system with linear cavity configuration.We successfully demonstrate a pulsed EYL with a pulse duration of approximately 5.9μs and a repetition rate of 20.0 kHz.展开更多
文摘Charged colloidal suspensions have been used as experimental models for the study of crystal nucleation. Here we propose that the technique of template-assisted colloidal self-assembly can be used to visualize the effects of defect propagation in atomic crystal films produced using epitaxial growth. Templates with periodic line defects were used to grow [100]-oriented three-dimensional photonic crystals by means of the template-assisted colloidal self-assembly method, aided by capillary and gravitational forces. The defect propagation in the [100]-oriented photonic crystal was observed using scanning electron microscopy, both at the surface of the crystal and on cleaved facets. This method is useful in the understanding of defect propagation in the growth of colloidal films on templates - and the same approach may also prove useful for the understanding of atomic crystal growth on substrates with defects. Additionally, the deliberate incorporation of line defects may prove valuable as a way of introducing waveguide channels into three-dimensional photonic crystals.
文摘A pulsed laser system is realized with graphene employed as a Q-switch.The graphene is exfoliated from its solution using an optical deposition and the optical tweezer effect.A fiber ferrule that already has the graphene deposited on it is inserted into an erbium-ytterbium laser(EYL)system with linear cavity configuration.We successfully demonstrate a pulsed EYL with a pulse duration of approximately 5.9μs and a repetition rate of 20.0 kHz.