期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Molecular phylogeny of Solms-laubachia(Brassicaceae) s.l.,based on multiple nuclear and plastid DNA sequences,and its biogeographic implications 被引量:7
1
作者 Ji-Pei YUE Hang SUN +3 位作者 David A. BAUM jian-Hua LI Ihsan A. AL-SHEHBAZ richard ree 《Journal of Systematics and Evolution》 SCIE CSCD 北大核心 2009年第5期402-415,共14页
The Hengduan Mountains region of south-west China is a noted biodiversity,hotspot, but the geographic origins and historical assembly of its rich endemic flora, including the sky-island species ofSolms-laubachia Musch... The Hengduan Mountains region of south-west China is a noted biodiversity,hotspot, but the geographic origins and historical assembly of its rich endemic flora, including the sky-island species ofSolms-laubachia Muschl. (Brassicaceae), have been little studied. Previous molecular studies on the phylogeny of Solms-laubachia showed it to be paraphyletic, leading to considerable expansion not only of its taxonomic limits, but also its geographic range, with the inclusion of taxa from outside the Hengduan region. However, these studies provided little resolution of interspecific relationships, preventing inferences about historical biogeography within the clade. In the present study, new sequence data from two nuclear genes (LEAFY and G3pdh) and two chloroplast intergenic spacers (petN-psbM and psbM-trnD) were combined with existing markers to increase phylogenetic signals. Phaeonychium villosum (Maxim.) Al-Shehbaz was found to be nested within Solms-laubachia s.l. In general, phylogenetic relationships appear to be a good predictor of geography, with the Hengduan Mountain endemics embedded in a paraphyletic grade of species from the western Himalayas and central Asia, but they also imply morphological homoplasy, lncongruence was detected between the nuclear and chloroplast gene trees, perhaps resulting from incomplete lineage sorting of ancestral polymorphisms. The crown age ofSolms-laubachia s.l. was estimated to be approximately 1.42-3.68 mya, using Bayesian relaxed molecular clock analysis. Historical biogeographic analysis using a parametric dispersalextinction-cladogenesis model inferred central Asia and the western Himalayas as most probable ancestral range of Solms-laubachia s.l., and estimated higher rates of eastward expansion than westward during the diversification of descendant lineages. In summary, our results suggest that Solms-laubachia s.l. originated during the Pliocene in central Asia, and subsequently migrated eastward into the Hengduan Mountains, colonizing sky-island, alpine scree-slope habitats that may have provided novel ecological opportunity and accelerated speciation, ultimately establishing this region as the present center of diversity of the genus. 展开更多
关键词 BIOGEOGRAPHY Brassicaceae Hengduan Mountains PHYLOGENY Solms-laubachia s.l.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部