In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA...In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA) focusing on spectral efficiency analysis and system performance. In particular, we show that Simultaneous multiuser accessing to a common destination is made possible by considering the channel impulse response (CIR) of each user as a signature. We begin by the assumption of the channel state information available at the receiver. Then, we analyze the perform- ance of the ChDMA integration in a random environment over UWB high data rate channel. Next, we discuss the de- sign of MMSE and optimal receiver structure for such a system. Additionally, we show an asymptotic analysis behavior taking into account the channel eigenvalues distribution with the associated spectral efficiency.展开更多
During the last decades, we have witnessed a widespread deployment of the ultra wide band (UWB) radar systems. Considering a medical field, an algorithm optimizing these systems is pointed out in this contribution. Be...During the last decades, we have witnessed a widespread deployment of the ultra wide band (UWB) radar systems. Considering a medical field, an algorithm optimizing these systems is pointed out in this contribution. Beginning with the description of the UWB radar system, this algorithm has proved to be not only able to take a medical image of the human body but also capable of diverting the human tissue. Moreover, we insist on the fact that this algorithm can easily optimize different radar parameters. So, the human body layer width, the incident angle and the frequency maximizing reflection coefficient are estimated in this paper.展开更多
The global project will focus on an eventual establishment of a holistic understanding of cellular communication, and proposing an ontological approach that expresses the domain’s concepts, classes, and properties in...The global project will focus on an eventual establishment of a holistic understanding of cellular communication, and proposing an ontological approach that expresses the domain’s concepts, classes, and properties in a formal and unambiguous way. However, this ongoing step is about making heterogeneous network technologies explicit and highlighting their commonalities and variabilities. It begins by studying three different cellular technologies, one from each generation (2G, 3G and 4G). After the analysis of Lte-advanced—a fourth generation technology—subject of the first paper [1], Universal Mobile Telecommunication System (UMTS) cellular network—a third generation technology—is the target of this current analysis. The final objective sought is to build Ontology capable of providing a common view of cellular network technologies.展开更多
文摘In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA) focusing on spectral efficiency analysis and system performance. In particular, we show that Simultaneous multiuser accessing to a common destination is made possible by considering the channel impulse response (CIR) of each user as a signature. We begin by the assumption of the channel state information available at the receiver. Then, we analyze the perform- ance of the ChDMA integration in a random environment over UWB high data rate channel. Next, we discuss the de- sign of MMSE and optimal receiver structure for such a system. Additionally, we show an asymptotic analysis behavior taking into account the channel eigenvalues distribution with the associated spectral efficiency.
文摘During the last decades, we have witnessed a widespread deployment of the ultra wide band (UWB) radar systems. Considering a medical field, an algorithm optimizing these systems is pointed out in this contribution. Beginning with the description of the UWB radar system, this algorithm has proved to be not only able to take a medical image of the human body but also capable of diverting the human tissue. Moreover, we insist on the fact that this algorithm can easily optimize different radar parameters. So, the human body layer width, the incident angle and the frequency maximizing reflection coefficient are estimated in this paper.
文摘The global project will focus on an eventual establishment of a holistic understanding of cellular communication, and proposing an ontological approach that expresses the domain’s concepts, classes, and properties in a formal and unambiguous way. However, this ongoing step is about making heterogeneous network technologies explicit and highlighting their commonalities and variabilities. It begins by studying three different cellular technologies, one from each generation (2G, 3G and 4G). After the analysis of Lte-advanced—a fourth generation technology—subject of the first paper [1], Universal Mobile Telecommunication System (UMTS) cellular network—a third generation technology—is the target of this current analysis. The final objective sought is to build Ontology capable of providing a common view of cellular network technologies.