In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and cataly...In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and catalyst-free syntheses of imines using the pressure reduction technique as a key technology. We found that this reaction proceeded very rapidly in the initial stage, but its rate decreased with the passage of time. It was also found that the reaction of benzaldehyde with aniline had a specificity that the phase transition occurred. In this method, the desired imines could be obtained in good to excellent yields, but target compounds had to be given by purifications using organic solvents. Therefore, we tried to develop the perfect synthetic method of imine derivatives without organic or inorganic solvents. We selected two methods and took them into this investigation. One was exactly mixing (1:1, substance ratio) aldehydes and amines and the other was employing lower pressure (>0.1 mmHg, previous method: 1.0 mmHg) at the pressure reducing technique. When this improved synthetic method was performed, it was revealed that pure target imines were obtained in excellent yields without any purification.展开更多
Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an ef...Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.展开更多
Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept ...Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept of green chemistry had deeply penetrated into society. In our previous work, we had reported new synthetic methods of imine derivatives using some active amines under solvent- and catalyst-free reaction conditions. This synthetic reaction proceeded smoothly and target compounds were obtained in excellent yields. In this system, when less reactive amines were used as substrates, the synthetic reaction was not finished in the short reaction time, and the corresponding compounds were given in moderate yields. In order to solve this point, we tried to improve the reaction conditions of this method. Through this improvement, it was found that pure target compounds could be obtained in excellent yields by using 1.1 equivalents of less reactive amines to aldehydes and extending the reaction time compared with our previous work. In this paper, we will introduce the detail of this study, and also report the result of the investigation of the reaction property by computational chemistry.展开更多
文摘In the field of organic syntheses, the development of environmentally friendly methods based on the concept of green chemistry has been always required. In response to this requirement, we reported solvent- and catalyst-free syntheses of imines using the pressure reduction technique as a key technology. We found that this reaction proceeded very rapidly in the initial stage, but its rate decreased with the passage of time. It was also found that the reaction of benzaldehyde with aniline had a specificity that the phase transition occurred. In this method, the desired imines could be obtained in good to excellent yields, but target compounds had to be given by purifications using organic solvents. Therefore, we tried to develop the perfect synthetic method of imine derivatives without organic or inorganic solvents. We selected two methods and took them into this investigation. One was exactly mixing (1:1, substance ratio) aldehydes and amines and the other was employing lower pressure (>0.1 mmHg, previous method: 1.0 mmHg) at the pressure reducing technique. When this improved synthetic method was performed, it was revealed that pure target imines were obtained in excellent yields without any purification.
文摘Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.
文摘Recently, the development of environmentally friendly syntheses of imine derivatives, which were attracting great attention for their reactivity and structure in various fields, progressed rapidly because the concept of green chemistry had deeply penetrated into society. In our previous work, we had reported new synthetic methods of imine derivatives using some active amines under solvent- and catalyst-free reaction conditions. This synthetic reaction proceeded smoothly and target compounds were obtained in excellent yields. In this system, when less reactive amines were used as substrates, the synthetic reaction was not finished in the short reaction time, and the corresponding compounds were given in moderate yields. In order to solve this point, we tried to improve the reaction conditions of this method. Through this improvement, it was found that pure target compounds could be obtained in excellent yields by using 1.1 equivalents of less reactive amines to aldehydes and extending the reaction time compared with our previous work. In this paper, we will introduce the detail of this study, and also report the result of the investigation of the reaction property by computational chemistry.