Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substan...Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells.Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette(ABC) transporters.Methods:We determined the effects of cabazitaxel,a novel tubulin-binding taxane,and paclitaxel on paclitaxelresistant,ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant,ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter.Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2,LLC-MDR1-WT,and HEK293/ABCC10 cells.Moreover,cabazitaxel had low efficacy,whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1,indicating a direct interaction of both drugs with the transporter.Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel,suggesting that cabazitaxel may have a low affinity for these efflux transporters.展开更多
基金supported by funds from the National Institutes of Health (1R15CA143701)St.John's University Research Seed Grant(579-1110-7002) to Dr.Zhe-Sheng Chen.Drs.Suneet ShuklaSuresh V.Ambudkar were supported by the Intramural Research Program,Center for Cancer Research, National Cancer Institute,National Institutes of Health
文摘Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells.Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette(ABC) transporters.Methods:We determined the effects of cabazitaxel,a novel tubulin-binding taxane,and paclitaxel on paclitaxelresistant,ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant,ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter.Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2,LLC-MDR1-WT,and HEK293/ABCC10 cells.Moreover,cabazitaxel had low efficacy,whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1,indicating a direct interaction of both drugs with the transporter.Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel,suggesting that cabazitaxel may have a low affinity for these efflux transporters.