期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
The thickness and structural characteristics of the crust across Tibetan plateau from active-sources seismic profiles 被引量:5
1
作者 Qiusheng Li Rui Gao +6 位作者 Zhanwu Lu Ye Guan Jisheng Zhang Pengwu Li Haiyan Wang rizheng he Marianne Karplus 《Earthquake Science》 CSCD 2009年第1期21-31,共11页
The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of continent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tib... The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of continent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tibetan plateau is essential to understand deformation behavior of the plateau. Active-source seismic profiling is most available geophysical method for imaging the structure of the continental crust. The results from more than 25 active-sources seismic profiles carried out in the past twenty years were reviewed in this article. A preliminary cross crustal pattern of the Tibetan Plateau was presented and discussed. The Moho discontinuity buries at the range of 60-80 km on average and have steep ramps located roughly beneath the sutures that are compatible with the successive stacking/accretion of the former Cenozoic blocks northeastward. The deepest Moho (near 80 km) appears closely near IYS and the crustal scale thrust system beneath southern margin of Tibetan plateau suggests strong dependence on collision and non-distributed deformation there. However, the -20 km order of Moho offsets hardly reappears in the inline section across northern Tibetan plateau. Without a universally accepted, convincing dynamic explanation model accommodated the all of the facts seen in controlled seismic sections, but vertical thickening and northeastern shorten of the crust is quite evident and interpretable to a certain extent as the result of continent-continent collision. Simultaneously, weak geophysical signature of the BNS suggests that convergence has been accommodated perhaps partially through pure-shear thickening accompanied by removal of lower crustal material by lateral escape. Recent years the result of Moho with -7 km offset and long extend in south-dip angle beneath the east Kunlun orogen and a grand thrust fault at the northern margin of Qilian orogen has attract more attention to action from the northern blocks. The broad lower-velocity area in the upper-middle crust of the Lhasa block was once considered as resulted from partially melted rocks. However the low normal vp/vs ratio and the Moho stepwise rise fail to support significant partial melting in the middle-lower crust of the central-northern Tibetan plateau. Furthermore, the lower-velocity of crust occasionally disappears, and/or local thinned exhibits their non-stationary spatial distribution. 展开更多
关键词 crustal structure crustal thickness active-sources seismic Tibetan plateau
下载PDF
Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau 被引量:6
2
作者 YuLan Li BaoShan Wang +3 位作者 rizheng he HongWei Zheng JiangYong Yan Yao Li 《Earth and Planetary Physics》 2018年第5期406-419,共14页
The medium-small earthquakes that occurred in the middle part of Tibetan Plateau(32°N–36°N, 90°E–93°E) from August 2016 to June 2017 were relocated using the absolute earthquake location method H... The medium-small earthquakes that occurred in the middle part of Tibetan Plateau(32°N–36°N, 90°E–93°E) from August 2016 to June 2017 were relocated using the absolute earthquake location method Hypo2000. Compared to the reports of Chinese Seismological Networks, our relocation results are more clustered on the whole, the horizontal location differences exceed 10 km, and the focal depths are concentrated in 0–8 km, which indicates that the upper crust inside the Tibetan Plateau is tectonically active. In June2017 altogether eight earthquakes above magnitude 3.0 took place; their relocated epicenters are concentrated around Gêladaindong.The relocation results of M<3.0 small earthquakes also showed obvious differences. Therefore, we used the CAP method to invert for the focal mechanisms of the M ≥3.0 earthquakes; results generally tally with the surface geological structures, indicating that the Tibetan Plateau is still under the strong compressional force from the India Plate. Among them the eight earthquakes that occurred near Gêladaindong in June 2017 are all of normal fault type or with some strike-slip at the same time; based on previous research results we conjecture that these events are intense shallow crust responses to deep crust-mantle activities. 展开更多
关键词 RELOCATION focal mechanism solution compression Gêladaindong ground surface response
下载PDF
Integrated geophysical evidence for a new style of continent-continent collision beneath the western Kunlun in the northwestern China 被引量:2
3
作者 rizheng he Rui Gao +1 位作者 Qiusheng Li Ye Guan 《Earthquake Science》 CSCD 2009年第4期379-387,共9页
Along the western Kunlun-Tarim-Tianshan geoscience transect in the northwestern China, an integrated geophysical investigation was carried out. Owing to the abominable natural conditions there, the sounding profile co... Along the western Kunlun-Tarim-Tianshan geoscience transect in the northwestern China, an integrated geophysical investigation was carried out. Owing to the abominable natural conditions there, the sounding profile could not cross the whole transect, consequentially, a variety of velocity structures in the transverse and vertical orientations beneath the whole transect were not obtained, such as the case within the western Kunlun orogenic belt. To supply a gap of deep seismic soundings within the western Kunlun orogenic belt, we used the Bouguer gravity anomaly data and the relationship between the compressive wave and the density to obtain the density structure of the crust beneath the western Kunlun and the southern Tarim basin by a forward fitting of gravity anomalies within the two-dimensional polygonal model of uniform medium. The crust of the Tarim basin with a rigid basement was like an asymmetrical arc, whose surface feature was the Bachu uplift in the middle of the Tarim basin. Beneath the conjoint area between the Tarim basin and the western Kunlun belt, there was a V-shape structure located just up to the top of the uplifted Moho. The multi-seismological structures jointly revealed that the face-to-face continent-continent collision beneath the western Kunlun is a new structural style within the continent-continent collision zone, which is a real model proved by the numerical modeling. 展开更多
关键词 Western Kunlun Tarim basin integrated geophysical evidence face-to-face continent-continent collision
下载PDF
200-kg large explosive detonation facing 50-km thick crust beneath west Qinling,northeastern Tibetan plateau 被引量:2
4
作者 Qiusheng Li Rui Gao +5 位作者 Haiyan Wang Jisheng Zhang Zhanwu Lu Pengwu Li Ye Guan rizheng he 《Earthquake Science》 CSCD 2009年第4期389-393,共5页
It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography an... It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography and rapid variation of both velocity and thickness of near-surface layer, but also strong attenuation of seismic wave through the thickest crust of the Earth. Large explosive sources had been successfully detonated in US, but its application in Tibetan plateau rarely has an example of good quality. Presented herein is the data of a 200-kg single shot we recorded in west Qinling, northeastern Tibetan plateau. The shot gather data with phenomenal signal-to-noise ratios illustrate the energy of the Prop phase. Although the observations are only limited to the northeastern Tibetan plateau and thus cannot comprise an exhaustive study, they nevertheless suggest that large explosions may be a useful exploration tool in Tibetan Plateau where standard seismic sources and profiling methods fail to produce adequate data of low crust. 展开更多
关键词 northeastern Tibetan plateau deep seismic reflection profile Moho large explosive sources
下载PDF
Characteristics of the crustal and mantle structures across Lhasa terrane 被引量:1
5
作者 Hongwei Zheng rizheng he Xuan Guo 《Earthquake Science》 CSCD 2009年第4期431-434,共4页
The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the ... The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift. 展开更多
关键词 the Dagzeo Deqen-Duoma Profile crest and mantle structure Lhasa terrane
下载PDF
通过接收函数分析得到的中国大陆莫霍面深度和Vp/Vs比的统一图
6
作者 rizheng he Xuefeng Shang +5 位作者 Chunquan Yu Haijiang Zhang Robert D.Van der Hilst 李万金 郑雪刚(译) 田宝峰(校) 《世界地震译丛》 2016年第3期222-233,共12页
中国大陆由多个地质构造单元复杂拼合而成,自中生代以来经历了强烈而广泛的构造变形。为了更好地理解其地质构造,我们对2009~2010年期间798个宽频带台站记录的共83509个远震波形进行了系统的接收函数分析,其中749个台站是中国地震... 中国大陆由多个地质构造单元复杂拼合而成,自中生代以来经历了强烈而广泛的构造变形。为了更好地理解其地质构造,我们对2009~2010年期间798个宽频带台站记录的共83509个远震波形进行了系统的接收函数分析,其中749个台站是中国地震台网中心数字化固定台站,其他49个台站是在西藏中北部临时部署的台站。每个台站下方的莫霍面深度和Vp/Vs比由标准的远震接收函数H-k叠加方法计算所得。得到的莫霍面深度变化总体上与各种深震探测剖面的结果一致。本文将我们的结果与以往接收函数研究的结果组合起来生成了中国大陆莫霍面深度和Vp/Vs变化的高分辨率图。与以往的研究结果相比,此项新研究涉及更多的台站以及由此生成的莫霍面深度图具有更高的横向分辨率,尤其是在中国东部地区。总的来说,中国大陆莫霍面深度的变化与主要构造单元具有显著的相关性。例如,在中国东部著名的重力梯度线上莫霍面深度有显著的变化。一般来说,Vp/Vs比值图显示出在青藏高原下面、重力梯度带上以及某些火山下面具有相对高的异常。 展开更多
关键词 时间序列分析 重力异常和地球结构 宽频带地震仪 体波 计算地震学克拉通
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部