The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of continent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tib...The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of continent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tibetan plateau is essential to understand deformation behavior of the plateau. Active-source seismic profiling is most available geophysical method for imaging the structure of the continental crust. The results from more than 25 active-sources seismic profiles carried out in the past twenty years were reviewed in this article. A preliminary cross crustal pattern of the Tibetan Plateau was presented and discussed. The Moho discontinuity buries at the range of 60-80 km on average and have steep ramps located roughly beneath the sutures that are compatible with the successive stacking/accretion of the former Cenozoic blocks northeastward. The deepest Moho (near 80 km) appears closely near IYS and the crustal scale thrust system beneath southern margin of Tibetan plateau suggests strong dependence on collision and non-distributed deformation there. However, the -20 km order of Moho offsets hardly reappears in the inline section across northern Tibetan plateau. Without a universally accepted, convincing dynamic explanation model accommodated the all of the facts seen in controlled seismic sections, but vertical thickening and northeastern shorten of the crust is quite evident and interpretable to a certain extent as the result of continent-continent collision. Simultaneously, weak geophysical signature of the BNS suggests that convergence has been accommodated perhaps partially through pure-shear thickening accompanied by removal of lower crustal material by lateral escape. Recent years the result of Moho with -7 km offset and long extend in south-dip angle beneath the east Kunlun orogen and a grand thrust fault at the northern margin of Qilian orogen has attract more attention to action from the northern blocks. The broad lower-velocity area in the upper-middle crust of the Lhasa block was once considered as resulted from partially melted rocks. However the low normal vp/vs ratio and the Moho stepwise rise fail to support significant partial melting in the middle-lower crust of the central-northern Tibetan plateau. Furthermore, the lower-velocity of crust occasionally disappears, and/or local thinned exhibits their non-stationary spatial distribution.展开更多
The medium-small earthquakes that occurred in the middle part of Tibetan Plateau(32°N–36°N, 90°E–93°E) from August 2016 to June 2017 were relocated using the absolute earthquake location method H...The medium-small earthquakes that occurred in the middle part of Tibetan Plateau(32°N–36°N, 90°E–93°E) from August 2016 to June 2017 were relocated using the absolute earthquake location method Hypo2000. Compared to the reports of Chinese Seismological Networks, our relocation results are more clustered on the whole, the horizontal location differences exceed 10 km, and the focal depths are concentrated in 0–8 km, which indicates that the upper crust inside the Tibetan Plateau is tectonically active. In June2017 altogether eight earthquakes above magnitude 3.0 took place; their relocated epicenters are concentrated around Gêladaindong.The relocation results of M<3.0 small earthquakes also showed obvious differences. Therefore, we used the CAP method to invert for the focal mechanisms of the M ≥3.0 earthquakes; results generally tally with the surface geological structures, indicating that the Tibetan Plateau is still under the strong compressional force from the India Plate. Among them the eight earthquakes that occurred near Gêladaindong in June 2017 are all of normal fault type or with some strike-slip at the same time; based on previous research results we conjecture that these events are intense shallow crust responses to deep crust-mantle activities.展开更多
Along the western Kunlun-Tarim-Tianshan geoscience transect in the northwestern China, an integrated geophysical investigation was carried out. Owing to the abominable natural conditions there, the sounding profile co...Along the western Kunlun-Tarim-Tianshan geoscience transect in the northwestern China, an integrated geophysical investigation was carried out. Owing to the abominable natural conditions there, the sounding profile could not cross the whole transect, consequentially, a variety of velocity structures in the transverse and vertical orientations beneath the whole transect were not obtained, such as the case within the western Kunlun orogenic belt. To supply a gap of deep seismic soundings within the western Kunlun orogenic belt, we used the Bouguer gravity anomaly data and the relationship between the compressive wave and the density to obtain the density structure of the crust beneath the western Kunlun and the southern Tarim basin by a forward fitting of gravity anomalies within the two-dimensional polygonal model of uniform medium. The crust of the Tarim basin with a rigid basement was like an asymmetrical arc, whose surface feature was the Bachu uplift in the middle of the Tarim basin. Beneath the conjoint area between the Tarim basin and the western Kunlun belt, there was a V-shape structure located just up to the top of the uplifted Moho. The multi-seismological structures jointly revealed that the face-to-face continent-continent collision beneath the western Kunlun is a new structural style within the continent-continent collision zone, which is a real model proved by the numerical modeling.展开更多
It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography an...It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography and rapid variation of both velocity and thickness of near-surface layer, but also strong attenuation of seismic wave through the thickest crust of the Earth. Large explosive sources had been successfully detonated in US, but its application in Tibetan plateau rarely has an example of good quality. Presented herein is the data of a 200-kg single shot we recorded in west Qinling, northeastern Tibetan plateau. The shot gather data with phenomenal signal-to-noise ratios illustrate the energy of the Prop phase. Although the observations are only limited to the northeastern Tibetan plateau and thus cannot comprise an exhaustive study, they nevertheless suggest that large explosions may be a useful exploration tool in Tibetan Plateau where standard seismic sources and profiling methods fail to produce adequate data of low crust.展开更多
The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the ...The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.展开更多
基金financed by the Ministry of Land and Resources of China (2004DKA20280-2-5)International Sciences and Technology cooperation (2006DFA21340)+5 种基金the special funds for Sciences and technology research of public welfare trades (200811021)the key innovation project for sciences and technology of Ministry of Land and Resources (1212010711813)the China Geology survey Bureau and resources land investigation project(1212010611809)the Basic outlay of scientific research work from Ministry of Science and Technology of the People's Republic of China (J0803)the National Natural Science Foundation of China (40830316 and 40874045)SINOPPROBE-Ⅱ and Open Fund (NO.GDL0603_) of Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education"
文摘The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of continent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tibetan plateau is essential to understand deformation behavior of the plateau. Active-source seismic profiling is most available geophysical method for imaging the structure of the continental crust. The results from more than 25 active-sources seismic profiles carried out in the past twenty years were reviewed in this article. A preliminary cross crustal pattern of the Tibetan Plateau was presented and discussed. The Moho discontinuity buries at the range of 60-80 km on average and have steep ramps located roughly beneath the sutures that are compatible with the successive stacking/accretion of the former Cenozoic blocks northeastward. The deepest Moho (near 80 km) appears closely near IYS and the crustal scale thrust system beneath southern margin of Tibetan plateau suggests strong dependence on collision and non-distributed deformation there. However, the -20 km order of Moho offsets hardly reappears in the inline section across northern Tibetan plateau. Without a universally accepted, convincing dynamic explanation model accommodated the all of the facts seen in controlled seismic sections, but vertical thickening and northeastern shorten of the crust is quite evident and interpretable to a certain extent as the result of continent-continent collision. Simultaneously, weak geophysical signature of the BNS suggests that convergence has been accommodated perhaps partially through pure-shear thickening accompanied by removal of lower crustal material by lateral escape. Recent years the result of Moho with -7 km offset and long extend in south-dip angle beneath the east Kunlun orogen and a grand thrust fault at the northern margin of Qilian orogen has attract more attention to action from the northern blocks. The broad lower-velocity area in the upper-middle crust of the Lhasa block was once considered as resulted from partially melted rocks. However the low normal vp/vs ratio and the Moho stepwise rise fail to support significant partial melting in the middle-lower crust of the central-northern Tibetan plateau. Furthermore, the lower-velocity of crust occasionally disappears, and/or local thinned exhibits their non-stationary spatial distribution.
基金supported by the National Key R/D Project (2016YFC0600301, 2016YFE0109300)the National Natural Science Foundation of China (41574086, 41761134094)China Geological Survey project (DD20160022-05)
文摘The medium-small earthquakes that occurred in the middle part of Tibetan Plateau(32°N–36°N, 90°E–93°E) from August 2016 to June 2017 were relocated using the absolute earthquake location method Hypo2000. Compared to the reports of Chinese Seismological Networks, our relocation results are more clustered on the whole, the horizontal location differences exceed 10 km, and the focal depths are concentrated in 0–8 km, which indicates that the upper crust inside the Tibetan Plateau is tectonically active. In June2017 altogether eight earthquakes above magnitude 3.0 took place; their relocated epicenters are concentrated around Gêladaindong.The relocation results of M<3.0 small earthquakes also showed obvious differences. Therefore, we used the CAP method to invert for the focal mechanisms of the M ≥3.0 earthquakes; results generally tally with the surface geological structures, indicating that the Tibetan Plateau is still under the strong compressional force from the India Plate. Among them the eight earthquakes that occurred near Gêladaindong in June 2017 are all of normal fault type or with some strike-slip at the same time; based on previous research results we conjecture that these events are intense shallow crust responses to deep crust-mantle activities.
基金supported by the National Natural Science Foundation of China (40404011, 40774051, 49734230)the basic outlay of scientific research work from Ministry of Science and Technology of the People’s Republic of China in 2007 and 2008 (J0707, J0803)+2 种基金Sino-American collaboration project from Ministry of Science and Technology of the People’s Republic of China (2006DFA21340)China National Probing Project (SinoProbe-02)Open Fund of Geo-detection Laboratory, Ministry of Education of China, and China University of Geosciences (No. GDL0602)
文摘Along the western Kunlun-Tarim-Tianshan geoscience transect in the northwestern China, an integrated geophysical investigation was carried out. Owing to the abominable natural conditions there, the sounding profile could not cross the whole transect, consequentially, a variety of velocity structures in the transverse and vertical orientations beneath the whole transect were not obtained, such as the case within the western Kunlun orogenic belt. To supply a gap of deep seismic soundings within the western Kunlun orogenic belt, we used the Bouguer gravity anomaly data and the relationship between the compressive wave and the density to obtain the density structure of the crust beneath the western Kunlun and the southern Tarim basin by a forward fitting of gravity anomalies within the two-dimensional polygonal model of uniform medium. The crust of the Tarim basin with a rigid basement was like an asymmetrical arc, whose surface feature was the Bachu uplift in the middle of the Tarim basin. Beneath the conjoint area between the Tarim basin and the western Kunlun belt, there was a V-shape structure located just up to the top of the uplifted Moho. The multi-seismological structures jointly revealed that the face-to-face continent-continent collision beneath the western Kunlun is a new structural style within the continent-continent collision zone, which is a real model proved by the numerical modeling.
基金the International Sciences and Technology Cooperation (2006DFA21340)the special funds for the Sciences and Technology Research of Public Welfare Trades (200811021)+3 种基金the key innovation project of sciences and technology of Ministry of Land and Resources (1212010711813)the basic outlay of scientific research work from Ministry of Science and Technology of the People’s Republic of China (J0803)the National Natural Science Foundation of China (40830316 and 40874045)SINOPPROBE-II
文摘It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography and rapid variation of both velocity and thickness of near-surface layer, but also strong attenuation of seismic wave through the thickest crust of the Earth. Large explosive sources had been successfully detonated in US, but its application in Tibetan plateau rarely has an example of good quality. Presented herein is the data of a 200-kg single shot we recorded in west Qinling, northeastern Tibetan plateau. The shot gather data with phenomenal signal-to-noise ratios illustrate the energy of the Prop phase. Although the observations are only limited to the northeastern Tibetan plateau and thus cannot comprise an exhaustive study, they nevertheless suggest that large explosions may be a useful exploration tool in Tibetan Plateau where standard seismic sources and profiling methods fail to produce adequate data of low crust.
基金supported by National Natural Science Foundation of China (Nos.40404011 and 40774051)National Probing Project (SinoProbe-02)the Basic outlay of scientific research work from the Ministry of Science and Technology of the People’s Republic of China in 2007, 2008, 2009
文摘The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.