The single-and double-electron capture(SEC, DEC) processes of He^(2+) ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selectiv...The single-and double-electron capture(SEC, DEC) processes of He^(2+) ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selective SEC and DEC cross sections are presented in the energy region of 2 eV/u to 20 keV/u. Results show that the dominant reaction channel is Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s) in the considered energy region due to strong couplings with the initial state Ne(2s^(2)2p^(6)^(1)S) + He^(2+) around the internuclear distance of 4.6 a.u. In our calculations, the SEC cross sections decrease initially and then increase whereby, the minimum point is around 0.38 keV/u with the increase of collision energies. After considering the effects of the electron translation factor(ETF), the SEC cross sections are increased by 15%–25% nearby the energy region of keV/u and agree better with the available results. The DEC cross sections are smaller than those of SEC because of the larger energy gaps and no strong couplings with the initial state. Due to the Demkov-type couplings between DEC channel Ne^(2+)(2s^(2)2p^(4)^(1)S) + He(1s^(2)) and the dominating SEC channel Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s), the DEC cross sections increase with increasing impact energies. Good consistency can also be found between the present DEC and the experimental measurements in the overlapping energy region.展开更多
The nonradiative charge-transfer processes of Be3+(1s)/B4+(1s)colliding with He(1s2)are investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC)method from 10 eV/u to 1800 eV/u.Total and state-se...The nonradiative charge-transfer processes of Be3+(1s)/B4+(1s)colliding with He(1s2)are investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC)method from 10 eV/u to 1800 eV/u.Total and state-selective cross sections are obtained and compared with other results available.Although the incident ions have the same number of electrons and collide with the same target,their cross sections are different due to the differences in molecular structure.For Be3+(1s)+He(1s2),only single-electron-capture(SEC)states are important and the total cross sections have a broad maximum around E=150 eV/u.While for B4+(1s)+He(1s2),both the SEC and double-electron-capture(DEC)processes are important,and the total SEC and DEC cross sections decrease rapidly with the energy decreasing.展开更多
We investigate the electron capture processes of N4+(1s22s)colliding with He(1s2)in the energy range of 10-1700 eV/amu using the quantum-mechanical molecular-orbital close-coupling(QMOCC)method.Total and stateselectiv...We investigate the electron capture processes of N4+(1s22s)colliding with He(1s2)in the energy range of 10-1700 eV/amu using the quantum-mechanical molecular-orbital close-coupling(QMOCC)method.Total and stateselective single-electron capture and double-electron capture(SEC and DEC)cross sections are obtained and compared with other available studies.The results agree better with the experimental data in both trend and magnitude when the electron translation factor(ETF)effects are included.Our results indicate that both the SEC and DEC processes play important roles in the considered energy region.For the SEC processes,the N3+(1s22p2)+He+(1s)states are the dominant capture states,and the N^2+(1s^2 2s2p^2)+He^2+states are the main DEC states.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033)the National Key Research and Development Program of China (Grant No. 2017YFA0402300)。
文摘The single-and double-electron capture(SEC, DEC) processes of He^(2+) ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selective SEC and DEC cross sections are presented in the energy region of 2 eV/u to 20 keV/u. Results show that the dominant reaction channel is Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s) in the considered energy region due to strong couplings with the initial state Ne(2s^(2)2p^(6)^(1)S) + He^(2+) around the internuclear distance of 4.6 a.u. In our calculations, the SEC cross sections decrease initially and then increase whereby, the minimum point is around 0.38 keV/u with the increase of collision energies. After considering the effects of the electron translation factor(ETF), the SEC cross sections are increased by 15%–25% nearby the energy region of keV/u and agree better with the available results. The DEC cross sections are smaller than those of SEC because of the larger energy gaps and no strong couplings with the initial state. Due to the Demkov-type couplings between DEC channel Ne^(2+)(2s^(2)2p^(4)^(1)S) + He(1s^(2)) and the dominating SEC channel Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s), the DEC cross sections increase with increasing impact energies. Good consistency can also be found between the present DEC and the experimental measurements in the overlapping energy region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774344,11474033,and 11574326)the National Key Research and Development Program of China(Grant No.2017YFA0402300).
文摘The nonradiative charge-transfer processes of Be3+(1s)/B4+(1s)colliding with He(1s2)are investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC)method from 10 eV/u to 1800 eV/u.Total and state-selective cross sections are obtained and compared with other results available.Although the incident ions have the same number of electrons and collide with the same target,their cross sections are different due to the differences in molecular structure.For Be3+(1s)+He(1s2),only single-electron-capture(SEC)states are important and the total cross sections have a broad maximum around E=150 eV/u.While for B4+(1s)+He(1s2),both the SEC and double-electron-capture(DEC)processes are important,and the total SEC and DEC cross sections decrease rapidly with the energy decreasing.
基金the National Natural Science Foundation of China under Grant Nos.11774344,11474033 and 11574326the National Key Research and Development Program of China under Grant No.2017YFA0402300.
文摘We investigate the electron capture processes of N4+(1s22s)colliding with He(1s2)in the energy range of 10-1700 eV/amu using the quantum-mechanical molecular-orbital close-coupling(QMOCC)method.Total and stateselective single-electron capture and double-electron capture(SEC and DEC)cross sections are obtained and compared with other available studies.The results agree better with the experimental data in both trend and magnitude when the electron translation factor(ETF)effects are included.Our results indicate that both the SEC and DEC processes play important roles in the considered energy region.For the SEC processes,the N3+(1s22p2)+He+(1s)states are the dominant capture states,and the N^2+(1s^2 2s2p^2)+He^2+states are the main DEC states.