The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The ...The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.展开更多
文摘The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.