期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A micromechanical model for efective conductivity in granular electrode structures 被引量:2
1
作者 Julia Ott Benjamin Vlker +2 位作者 Yixiang Gan robert m.mc meeking Marc Kamlah 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期682-698,共17页
Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB a... Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase. 展开更多
关键词 Granular electrode structures Effective conductivity - Percolation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部