期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
C_4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective 被引量:7
1
作者 Caitlin S.Byrt Christopher P.L.Grof robert t.furbank 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第2期120-135,共16页
The main feedstocks for bioethanol are sugarcane (Saccharum offic- inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food cr... The main feedstocks for bioethanol are sugarcane (Saccharum offic- inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall. 展开更多
关键词 C4 Plants as Biofuel Feedstocks Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective
原文传递
Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon 被引量:1
2
作者 Richard Poiré Vincent Chochois +3 位作者 Xavier R.R.Sirault John P.Vogel Michelle Watt robert t.furbank 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第8期781-796,共16页
This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of sho... This work evaluates the phenotypic response of the model grass (Brachypodium distacbyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2 〉 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response tonitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina- tion of genomic regions associated with superior nutrient use efficiency. 展开更多
关键词 Nutrients uptake PHENOMICS photosynthesis root shootCitation: Poire R Chochois V Sirault XRR Vogel JP Watt M Furbank RT(2o14) Digital imaging approaches for phenotyping whole plantnitrogen and phosphorus response in Brachypodium distachyon.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部