Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian topologies that thrive on involving multiple gaps were studied, unveiling a new horiz...Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian topologies that thrive on involving multiple gaps were studied, unveiling a new horizon in topological physics beyond the conventional paradigm. Here, we report on the first experimental realization of a topological Euler insulator phase with unique meronic characterization in an acoustic metamaterial. We demonstrate that this topological phase has several nontrivial features:First, the system cannot be described by conventional topological band theory, but has a nontrivial Euler class that captures the unconventional geometry of the Bloch bands in the Brillouin zone.Second, we uncover in theory and probe in experiments a meronic configuration of the bulk Bloch states for the first time. Third, using a detailed symmetry analysis, we show that the topological Euler insulator evolves from a non-Abelian topological semimetal phase via. the annihilation of Dirac points in pairs in one of the band gaps. With these nontrivial properties, we establish concretely an unconventional bulk-edge correspondence which is confirmed by directly measuring the edge states via. pump-probe techniques. Our work thus unveils a nontrivial topological Euler insulator phase with a unique meronic pattern and paves the way as a platform for non-Abelian topological phenomena.展开更多
基金the National Key R&D Program of China (2022YFA1404400)the National Natural Science Foundation of China (12125504 and 12074281)+7 种基金the “Hundred Talents Program” of the Chinese Academy of Sciencesthe Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutionspartially funded by a Marie-Curie fellowship (101025315)financial support from the Swedish Research Council (Vetenskapsradet) (2021-04681)funding from a New Investigator Award,EPSRC grant EP/W00187X/1EPSRC ERC underwrite grant EP/X025829/1a Royal Society exchange grant IES/ R1/221060Trinity College,Cambridge。
文摘Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian topologies that thrive on involving multiple gaps were studied, unveiling a new horizon in topological physics beyond the conventional paradigm. Here, we report on the first experimental realization of a topological Euler insulator phase with unique meronic characterization in an acoustic metamaterial. We demonstrate that this topological phase has several nontrivial features:First, the system cannot be described by conventional topological band theory, but has a nontrivial Euler class that captures the unconventional geometry of the Bloch bands in the Brillouin zone.Second, we uncover in theory and probe in experiments a meronic configuration of the bulk Bloch states for the first time. Third, using a detailed symmetry analysis, we show that the topological Euler insulator evolves from a non-Abelian topological semimetal phase via. the annihilation of Dirac points in pairs in one of the band gaps. With these nontrivial properties, we establish concretely an unconventional bulk-edge correspondence which is confirmed by directly measuring the edge states via. pump-probe techniques. Our work thus unveils a nontrivial topological Euler insulator phase with a unique meronic pattern and paves the way as a platform for non-Abelian topological phenomena.