期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strain-induced band gap engineering in layered TiS3 被引量:3
1
作者 Robert Biele Eduardo Flores +5 位作者 Jose Ramon Ares Carlos Sanchez Isabel J. Ferrer Gabino Rubio-Bollinger Andres Castellanos-Gomezs roberto d'agosta 《Nano Research》 SCIE EI CAS CSCD 2018年第1期225-232,共8页
By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calcu... By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction. 展开更多
关键词 band gap engineering titanium trisulfide 2-D materials STRAIN
原文传递
Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires 被引量:2
2
作者 Kaike Yang Andres Cantarero +1 位作者 Angel Rubio roberto d'agosta 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2611-2619,共9页
We investigate the thermoelectric energy conversion efficiency of Si and Ge nanowires, and in particular, that of Si/Ge core-shell nanowires. We show how the presence of a thin Ge shell on a Si core nanowire increases... We investigate the thermoelectric energy conversion efficiency of Si and Ge nanowires, and in particular, that of Si/Ge core-shell nanowires. We show how the presence of a thin Ge shell on a Si core nanowire increases the overall figure of merit. We find the optimal thickness of the Ge shell to provide the largest figure of merit for the devices. We also consider Ge core/Si shell nanowires, and show that an optimal thickness of the Si shell does not exist, since the figure of merit is a monotonically decreasing function of the radius of the nanowire. Finally, we verify the empirical law relating the electron energy gap to the optimal working temperature that maximizes the efficiency of the device. 展开更多
关键词 thermoelectric properties Seebeck coefficient silicon and germanium core-shell nanowires
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部