An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a st...An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a standard lattice Boltzmann method (LBM). Comparisons of exemplifying simulations to results in the literature validate the approach as well as the convergence analysis. Pressure fluctuations occurring in Ladd's approach are greatly reduced. In comparison with the immersed boundary method, this approach does not require cost intensive interpolations. The parallel efficiency of LBM is retained. An intrinsic momentum transfer is observed during particle-particle collisions. To demonstrate the capa- bilities of the approach, sedimentation of particles of several shapes is simulated despite omitting an explicit particle collision model.展开更多
文摘An alternative approach to simulating arbitrarily shaped particles submersed in viscous fluid in two dimensions is proposed, obtained by adapting the velocity parameter of the equilibrium distribution function of a standard lattice Boltzmann method (LBM). Comparisons of exemplifying simulations to results in the literature validate the approach as well as the convergence analysis. Pressure fluctuations occurring in Ladd's approach are greatly reduced. In comparison with the immersed boundary method, this approach does not require cost intensive interpolations. The parallel efficiency of LBM is retained. An intrinsic momentum transfer is observed during particle-particle collisions. To demonstrate the capa- bilities of the approach, sedimentation of particles of several shapes is simulated despite omitting an explicit particle collision model.