期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Human Behavior Classification Using Geometrical Features of Skeleton and Support Vector Machines 被引量:1
1
作者 Syed Muhammad Saqlain Shah Tahir Afzal Malik +2 位作者 robina khatoon SyedSaqlain Hassan Faiz Ali Shah 《Computers, Materials & Continua》 SCIE EI 2019年第8期535-553,共19页
Classification of human actions under video surveillance is gaining a lot of attention from computer vision researchers.In this paper,we have presented methodology to recognize human behavior in thin crowd which may b... Classification of human actions under video surveillance is gaining a lot of attention from computer vision researchers.In this paper,we have presented methodology to recognize human behavior in thin crowd which may be very helpful in surveillance.Research have mostly focused the problem of human detection in thin crowd,overall behavior of the crowd and actions of individuals in video sequences.Vision based Human behavior modeling is a complex task as it involves human detection,tracking,classifying normal and abnormal behavior.The proposed methodology takes input video and applies Gaussian based segmentation technique followed by post processing through presenting hole filling algorithm i.e.,fill hole inside objects algorithm.Human detection is performed by presenting human detection algorithm and then geometrical features from human skeleton are extracted using feature extraction algorithm.The classification task is achieved using binary and multi class support vector machines.The proposed technique is validated through accuracy,precision,recall and F-measure metrics. 展开更多
关键词 Human behavior classification SEGMENTATION human detection support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部