Human African trypanosomiasis (HAT) affects up to half a million people every year in sub-Saharan Africa. Interruption of transmission of the disease by early diagnosis and treatment is core to the control and eventua...Human African trypanosomiasis (HAT) affects up to half a million people every year in sub-Saharan Africa. Interruption of transmission of the disease by early diagnosis and treatment is core to the control and eventual elimination of HAT. The routine diagnostic method for HAT is light microscopy of blood samples. The present study sought to evaluate the potential of TbgI2 and TbgI17 tandem repeat antigens as candidates for the diagnosis of Trypanosoma brucei rhodesiense. The expressed proteins were purified and the antigenic reactivity evaluation was done using multiplex assay using sera obtained from HAT patients. Receiver operating characteristic analysis showed that recombinant antigen, TbgI2 had high sensitivity for sera from patients infected with T. b. rhodesiense with the area under the curve being 0.577 and a sensitivity of 0.641 and specificity 0.650. The results suggest that TbgI2 is a potential biomarker for T. b. rhodesiense HAT serodiagnostic tests.展开更多
文摘Human African trypanosomiasis (HAT) affects up to half a million people every year in sub-Saharan Africa. Interruption of transmission of the disease by early diagnosis and treatment is core to the control and eventual elimination of HAT. The routine diagnostic method for HAT is light microscopy of blood samples. The present study sought to evaluate the potential of TbgI2 and TbgI17 tandem repeat antigens as candidates for the diagnosis of Trypanosoma brucei rhodesiense. The expressed proteins were purified and the antigenic reactivity evaluation was done using multiplex assay using sera obtained from HAT patients. Receiver operating characteristic analysis showed that recombinant antigen, TbgI2 had high sensitivity for sera from patients infected with T. b. rhodesiense with the area under the curve being 0.577 and a sensitivity of 0.641 and specificity 0.650. The results suggest that TbgI2 is a potential biomarker for T. b. rhodesiense HAT serodiagnostic tests.