This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spe...This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.展开更多
文摘This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.