A previous study, focused on the correlation of muta-tion pairs of synonymous (S) and asynonymous (A) mutations, distinguished only between the treated and untreated data of protease and reverse tran-scriptase (RT) of...A previous study, focused on the correlation of muta-tion pairs of synonymous (S) and asynonymous (A) mutations, distinguished only between the treated and untreated data of protease and reverse tran-scriptase (RT) of HIV-1 subtype B. It is well known that single mutation patterns in HIV-1 are treat-ment-specific. It logically follows that covariation between mutations will also be treatment specific. Thus, our motivation is to give a more in depth study of the covariation between mutation pairs, analyzing not only treated and untreated, but what specific treatments were used, and how they affected the co-variation between the mutations differently. We in-tended to further deepen this study by analyzing the covariation of mutations in protease and RT in dif-ferent subtypes of HIV-1. We found that virus sam-ples subjected to antiretroviral Protease- and RT- inhibitors do show different patterns of mutation covariation in B-subtype protease and RT of HIV-1, while maintaining the same overall trend. covariation will tend to be higher and more distinct from and covariation after treatment. The same trend continues in protease and RT re-gardless of subtype. We also found the highly cova-ried codon positions, position pairs, and position- covariation clusters in protease, affected by different treatments. Most of them are well known major drug-resistance sites for these treatments.展开更多
文摘A previous study, focused on the correlation of muta-tion pairs of synonymous (S) and asynonymous (A) mutations, distinguished only between the treated and untreated data of protease and reverse tran-scriptase (RT) of HIV-1 subtype B. It is well known that single mutation patterns in HIV-1 are treat-ment-specific. It logically follows that covariation between mutations will also be treatment specific. Thus, our motivation is to give a more in depth study of the covariation between mutation pairs, analyzing not only treated and untreated, but what specific treatments were used, and how they affected the co-variation between the mutations differently. We in-tended to further deepen this study by analyzing the covariation of mutations in protease and RT in dif-ferent subtypes of HIV-1. We found that virus sam-ples subjected to antiretroviral Protease- and RT- inhibitors do show different patterns of mutation covariation in B-subtype protease and RT of HIV-1, while maintaining the same overall trend. covariation will tend to be higher and more distinct from and covariation after treatment. The same trend continues in protease and RT re-gardless of subtype. We also found the highly cova-ried codon positions, position pairs, and position- covariation clusters in protease, affected by different treatments. Most of them are well known major drug-resistance sites for these treatments.