Background: HRP2-based Rapid Diagnostic Tests (RDTs) for malaria ensure a rational use of artemisinin-based combination therapy (ACT). The HRP2 antigen can go through the cerebrospinal fluid (CSF). Purpose: To...Background: HRP2-based Rapid Diagnostic Tests (RDTs) for malaria ensure a rational use of artemisinin-based combination therapy (ACT). The HRP2 antigen can go through the cerebrospinal fluid (CSF). Purpose: To assess the HRP2-based RDT in malaria and detect the HRP2 in CSF. Methods: From November 2006 to May 2007, all patients under 15 years showing clinical symptoms of malaria were included. RDT was performed on the CSF and peripheral blood. Results: Out of the 951 patients included, 131 (13.7%) were confirmed through RDT and 130 (13.6%) through thick blood smear. Sensitivity and specificity stood at 96.96% and 99.71% respectively, for uncomplicated cases and at 100% and 99.13% for severe cases. Tests to detect HRP2 in the CSF of 52 cases were negative. Conclusion: Tests to detect HRP2 in the CSF could make it possible to diagnose severe malaria cases when peripheral parasitemia would be below the detection threshold.展开更多
文摘Background: HRP2-based Rapid Diagnostic Tests (RDTs) for malaria ensure a rational use of artemisinin-based combination therapy (ACT). The HRP2 antigen can go through the cerebrospinal fluid (CSF). Purpose: To assess the HRP2-based RDT in malaria and detect the HRP2 in CSF. Methods: From November 2006 to May 2007, all patients under 15 years showing clinical symptoms of malaria were included. RDT was performed on the CSF and peripheral blood. Results: Out of the 951 patients included, 131 (13.7%) were confirmed through RDT and 130 (13.6%) through thick blood smear. Sensitivity and specificity stood at 96.96% and 99.71% respectively, for uncomplicated cases and at 100% and 99.13% for severe cases. Tests to detect HRP2 in the CSF of 52 cases were negative. Conclusion: Tests to detect HRP2 in the CSF could make it possible to diagnose severe malaria cases when peripheral parasitemia would be below the detection threshold.