Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier tr...Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The interaction of copper nanoparticles with the surface functional groups of EFB powders was identified by FTIR analysis. The peak shift of O-H and C-O functional groups indicated the interaction between EFB and copper nanoparticles. Besides that, XRD and EDX analysis confirmed the formation of copper nanoparticles on EFB powder. Due to the copper impregnation, the crystallinity of the EFB was increased as shown by XRD. The particles size of nanoparticles was analysed via TEM and AFM where the sizes were in the range of 60 - 100 nm. These findings strongly suggest that, copper nanoparticles impregnated EFB powders can be synthesized via in- situ sol gel method.展开更多
Functionalized copper nanoparticles (FCuNPs) have been synthesized by chemical reduction method and polyvinyl alcohol (PVA) performed as a stabilizer in that medium. Analysis observed that the average size of the synt...Functionalized copper nanoparticles (FCuNPs) have been synthesized by chemical reduction method and polyvinyl alcohol (PVA) performed as a stabilizer in that medium. Analysis observed that the average size of the synthesized FCuNPs was 3.5 nm. The obtained FCuNPs were loaded in the oil palm empty fruit bunch (EFB) natural fibre. Before the loading of FCuNPs in EFB fibres, the surface of the fibres is tailored by the cationic agent CHPTAC since they have a natural tendency to exhibit negatively charged surface owing to the presence of large amount of hydroxyl groups. Thereafter, different types of composite were developed and their properties were studied. The composites were developed by using the untreated empty fruit bunch (UEFB) fibres and FCuNPs loaded EFB (NP-CAEFB) fibres with commercially available unsaturated polyester resin (UPER). The synthesized composites were characterized through FTIR, FESEM, XRD, DSC, tensile strength tests, etc. The obtained biodegradation results indicated that significant weight loss was not observed for neat PER and PER/FNP-CAEFB nanocomposite, whereas, the UEFB/VUPER composite showed ca. 21.4% weight loss at 90 days, which was considered rationally due to the preferential degradation of the fibre.展开更多
文摘Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The interaction of copper nanoparticles with the surface functional groups of EFB powders was identified by FTIR analysis. The peak shift of O-H and C-O functional groups indicated the interaction between EFB and copper nanoparticles. Besides that, XRD and EDX analysis confirmed the formation of copper nanoparticles on EFB powder. Due to the copper impregnation, the crystallinity of the EFB was increased as shown by XRD. The particles size of nanoparticles was analysed via TEM and AFM where the sizes were in the range of 60 - 100 nm. These findings strongly suggest that, copper nanoparticles impregnated EFB powders can be synthesized via in- situ sol gel method.
文摘Functionalized copper nanoparticles (FCuNPs) have been synthesized by chemical reduction method and polyvinyl alcohol (PVA) performed as a stabilizer in that medium. Analysis observed that the average size of the synthesized FCuNPs was 3.5 nm. The obtained FCuNPs were loaded in the oil palm empty fruit bunch (EFB) natural fibre. Before the loading of FCuNPs in EFB fibres, the surface of the fibres is tailored by the cationic agent CHPTAC since they have a natural tendency to exhibit negatively charged surface owing to the presence of large amount of hydroxyl groups. Thereafter, different types of composite were developed and their properties were studied. The composites were developed by using the untreated empty fruit bunch (UEFB) fibres and FCuNPs loaded EFB (NP-CAEFB) fibres with commercially available unsaturated polyester resin (UPER). The synthesized composites were characterized through FTIR, FESEM, XRD, DSC, tensile strength tests, etc. The obtained biodegradation results indicated that significant weight loss was not observed for neat PER and PER/FNP-CAEFB nanocomposite, whereas, the UEFB/VUPER composite showed ca. 21.4% weight loss at 90 days, which was considered rationally due to the preferential degradation of the fibre.