Countries in the Middle Eastern and North African (MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content (<0.5%). In this study, we su...Countries in the Middle Eastern and North African (MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content (<0.5%). In this study, we summarize examples of how people in the few oases of the MENA region overcome environmental challenges by sustainably managing economically important date production. On the basis of the limited studies found in the existing literature, this mini-review focuses on the role of traditional soil organic matter amendments beneath the soil surface as a key tool in land restoration. We conclude that soil organic matter amendments can be very successful in restoring soil water and preventing the soil from salinization.展开更多
The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The tw...The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The two main methods to capture CO_(2)released from soils are the alkali trap method and the direct gas sampling method.A 25-d laboratory incubation experiment was conducted to compare the efficacies of these two methods to analyze CO_(2)emissions from the non-carbonate and carbonate-rich soils.An isotopic fraction was introduced into the calculations to determine the impacts on partitioning of the sources of CO_(2)into soil organic carbon(SOC)and soil inorganic carbon(SIC)and into C3 and/or C4 plant-derived SOC.The results indicated that CO_(2)emissions from the non-carbonate soil measured using the alkali trap and gas sampling methods were not significantly different.For the carbonate-rich soil,the CO_(2)emission measured using the alkali trap method was significantly higher than that measured using the gas sampling method from the 14 th day of incubation onwards.Although SOC and SIC each accounted for about 50%of total soil C in the carbonate-rich soil,SOC decomposition contributed 57%–72%of the total CO_(2)emitted.For both non-carbonate and carbonate-rich soils,the SOC derived from C4 plants decomposed faster than that originated from C3 plants.We propose that for carbonate soil,CO_(2)emission may be overestimated using the alkali trap method because of decreasing CO_(2)pressure within the incubation jar,but underestimated using the direct gas sampling method.The gas sampling interval and ambient air may be important sources of error,and steps should be taken to mitigate errors related to these factors in soil incubation and CO_(2)quantification studies.展开更多
In Tunisia, the coastal Chenini oasis is characterized by a lush vegetation cover, whereas more inland continental oases(e.g., the Guettaya oasis) have a very scarce vegetation cover. For sustaining date palm producti...In Tunisia, the coastal Chenini oasis is characterized by a lush vegetation cover, whereas more inland continental oases(e.g., the Guettaya oasis) have a very scarce vegetation cover. For sustaining date palm production in these areas, organic fertilizers are applied,either spread on the soil surface(in Chenini) or buried under a sand layer(in Guettaya). We examined at a molecular level how these management techniques affect soil organic matter composition in oasis systems. A dominance of fresh plant input for Guettaya was indicated by solid-state 13C nuclear magnetic resonance spectroscopy signals, which was most pronounced in the uppermost soil close to palms. Evidence for more degraded organic matter was found in deeper soil near the palms, as well as in the soil distant from the palms. Amino sugar contents were low in the uppermost Guettaya soil near the palms. The overall microbial amino sugar residue contents were similar in range as those found in other dryland environments. With increasing distance from trees, the amino sugar contents declined in Guettaya, where the palms grow on bare soil, but this was not the case for Chenini, which has multi-layer vegetation cover under palms. In agreement with the results from previous dryland studies, the soil microbial community in both oasis systems was dominated by fungi in topsoil, and a shift toward bacteria-derived residues in subsurface soil. This might be due to higher variability of temperature and moisture in topsoil and/or lower degradability of fungal remains;however, further research is required to confirm this hypothesis.展开更多
基金supported by the Exploratory Grant(STC_TUNGER-006/INTOASES)as part of the Bilateral Scientific and Technological Cooperation between the Republic of Tunisia and the Federal Republic of Germany
文摘Countries in the Middle Eastern and North African (MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content (<0.5%). In this study, we summarize examples of how people in the few oases of the MENA region overcome environmental challenges by sustainably managing economically important date production. On the basis of the limited studies found in the existing literature, this mini-review focuses on the role of traditional soil organic matter amendments beneath the soil surface as a key tool in land restoration. We conclude that soil organic matter amendments can be very successful in restoring soil water and preventing the soil from salinization.
基金supported by the National Key Research and Development Program of China(No.2016YFD0201200)the National Natural Science Foundation of China(Nos.31370527,31261140367,and 30870414)the Chinese Scholarship Council(No.201706350210)for the support of the work。
文摘The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The two main methods to capture CO_(2)released from soils are the alkali trap method and the direct gas sampling method.A 25-d laboratory incubation experiment was conducted to compare the efficacies of these two methods to analyze CO_(2)emissions from the non-carbonate and carbonate-rich soils.An isotopic fraction was introduced into the calculations to determine the impacts on partitioning of the sources of CO_(2)into soil organic carbon(SOC)and soil inorganic carbon(SIC)and into C3 and/or C4 plant-derived SOC.The results indicated that CO_(2)emissions from the non-carbonate soil measured using the alkali trap and gas sampling methods were not significantly different.For the carbonate-rich soil,the CO_(2)emission measured using the alkali trap method was significantly higher than that measured using the gas sampling method from the 14 th day of incubation onwards.Although SOC and SIC each accounted for about 50%of total soil C in the carbonate-rich soil,SOC decomposition contributed 57%–72%of the total CO_(2)emitted.For both non-carbonate and carbonate-rich soils,the SOC derived from C4 plants decomposed faster than that originated from C3 plants.We propose that for carbonate soil,CO_(2)emission may be overestimated using the alkali trap method because of decreasing CO_(2)pressure within the incubation jar,but underestimated using the direct gas sampling method.The gas sampling interval and ambient air may be important sources of error,and steps should be taken to mitigate errors related to these factors in soil incubation and CO_(2)quantification studies.
基金the German Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF)for the Exploratory Grant(No.STC TUNGER-006/INTOASES)as a part of the Bilateral Scientific and Technological Cooperation between the Republic of Tunisia and the Federal Republic of Germanythe patience and hospitality of the oasis farmers at Chenini and Guettaya oases in Tunisia,as well as technical support by the technicians at the Institute of Crop Science and Resource Conservation of the University of Bonn and the Agrosphere Institute(IBG-3)of Forschungszentrum Jülich GmbH,Germany
文摘In Tunisia, the coastal Chenini oasis is characterized by a lush vegetation cover, whereas more inland continental oases(e.g., the Guettaya oasis) have a very scarce vegetation cover. For sustaining date palm production in these areas, organic fertilizers are applied,either spread on the soil surface(in Chenini) or buried under a sand layer(in Guettaya). We examined at a molecular level how these management techniques affect soil organic matter composition in oasis systems. A dominance of fresh plant input for Guettaya was indicated by solid-state 13C nuclear magnetic resonance spectroscopy signals, which was most pronounced in the uppermost soil close to palms. Evidence for more degraded organic matter was found in deeper soil near the palms, as well as in the soil distant from the palms. Amino sugar contents were low in the uppermost Guettaya soil near the palms. The overall microbial amino sugar residue contents were similar in range as those found in other dryland environments. With increasing distance from trees, the amino sugar contents declined in Guettaya, where the palms grow on bare soil, but this was not the case for Chenini, which has multi-layer vegetation cover under palms. In agreement with the results from previous dryland studies, the soil microbial community in both oasis systems was dominated by fungi in topsoil, and a shift toward bacteria-derived residues in subsurface soil. This might be due to higher variability of temperature and moisture in topsoil and/or lower degradability of fungal remains;however, further research is required to confirm this hypothesis.