期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Data-driven strategy for state of health prediction and anomaly detection in lithium-ion batteries
1
作者 Slimane Arbaoui Ahmed Samet +2 位作者 Ali Ayadi Tedjani Mesbahi romuald boné 《Energy and AI》 EI 2024年第3期419-431,共13页
This study addresses the crucial challenge of monitoring the State of Health(SOH)of Lithium-Ion Batteries(LIBs)in response to the escalating demand for renewable energy systems and the imperative to reduce CO2 emissio... This study addresses the crucial challenge of monitoring the State of Health(SOH)of Lithium-Ion Batteries(LIBs)in response to the escalating demand for renewable energy systems and the imperative to reduce CO2 emissions.The research introduces deep learning(DL)models,namely Encoder-Long Short-Term Memory(E-LSTM)and Convolutional Neural Network-LSTM(CNN–LSTM),each designed to forecast battery SOH.E-LSTM integrates an encoder for dimensionality reduction and an LSTM model to capture data dependencies.CNN–LSTM,on the other hand,employs CNN layers for encoding followed by LSTM layers for precise SOH estimation.Significantly,we prioritize model explainability by employing a game-theoretic approach known as SHapley Additive exPlanations(SHAP)to elucidate the output of our models.Furthermore,a method based on pattern mining was developed,synergizing with the model,to identify patterns contributing to abnormal SOH decrease.These insights are presented through informative plots.The proposed approach relies on the battery dataset from the Massachusetts Institute of Technology(MIT)and showcases promising results in accurately estimating SOH values,in which the E-LSTM model outperformed the CNN–LSTM model with a Mean Absolute Error(MAE)of less than 1%. 展开更多
关键词 Lithium-ion batteries State of health LSTM CNN Auto-encoders .Pattern mining Explainable artificial intelligence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部