Doubled haploid(DH)plants have been widely used for breeding and biological research in crops.Pop ulus spp.have been used as model woody plant species for biological research.However,the induction of DH poplar plants ...Doubled haploid(DH)plants have been widely used for breeding and biological research in crops.Pop ulus spp.have been used as model woody plant species for biological research.However,the induction of DH poplar plants is onerous,and limited biological or breeding work has been carried out on DH individuals or populations.In this study,we provide an effective protocol for poplar haploid induction based on an anther culture method.A total of 96 whole DH plant lines were obtained using an F1hybrid of Populus simonii×P.nigra as a donor tree.The phenotypes of the DH population showed exceptionally high variance when compared to those of half-sib progeny of the donor tree.Each DH line displayed distinct features compared to those of the other DH lines or the donor tree.Additionally,some excellent homozygous lines have the potential to be model plants in genetic and breeding studies.展开更多
The Betula genus contains pentacyclic triterpenoid betulin known for its environmental adaptation and medicinal properties.However,the mechanisms underlying betulin biosynthesis responding to climate change remain unc...The Betula genus contains pentacyclic triterpenoid betulin known for its environmental adaptation and medicinal properties.However,the mechanisms underlying betulin biosynthesis responding to climate change remain unclear.In this study,the role of epigenetic modification(DNA methylation) in betulin biosynthesis was examined and how climatic factors influence it.Whole-genome bisulfite sequencing was performed for greenhouse-grown Chinese white birch(Betula platyphylla Sukaczev) treated with DNA methylation inhibitor zebularine(ZEB) and a natural birch population in Northeast China.ZEB treatment significantly affected the CHH methylation level of transposable elements and betulin content in a hormesis dose-dependent manner.The methylation and expression of bHLH9,a key transcriptional factor controlling betulin biosynthesis,were also consistently affected by ZEB treatment as a hormetic dose-response.In the natural population,there was a positive correlation between promoter methylation of bHLH9 and summer precipitation,while winter temperature was negatively correlated.Thus climate-dependent methylation of bHLH9 regulates the expression of downstream genes involved in betulin biosynthesis.This study highlights the role of environmental signals to induce epigenetic changes that result in betulin production,possibly helping to develop resilient plants to combat ongoing climate change and enhance secondary metabolite production.展开更多
High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method fo...High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The sc RNA-seq profiled9,798 cells, which were grouped into 12 clusters.Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations,we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type(cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.展开更多
基金supported by the National Key R&D Program of China(2021YFD2200203)Heilongjiang Province Key R&D Program of China(GA21B010)+1 种基金Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)Heilongjiang Postdoctoral Financial Assistance(LBH-Z21097)。
文摘Doubled haploid(DH)plants have been widely used for breeding and biological research in crops.Pop ulus spp.have been used as model woody plant species for biological research.However,the induction of DH poplar plants is onerous,and limited biological or breeding work has been carried out on DH individuals or populations.In this study,we provide an effective protocol for poplar haploid induction based on an anther culture method.A total of 96 whole DH plant lines were obtained using an F1hybrid of Populus simonii×P.nigra as a donor tree.The phenotypes of the DH population showed exceptionally high variance when compared to those of half-sib progeny of the donor tree.Each DH line displayed distinct features compared to those of the other DH lines or the donor tree.Additionally,some excellent homozygous lines have the potential to be model plants in genetic and breeding studies.
基金the National Non-profi t Institute Research Grant of the Chinese Academy of Forestry(CAFYBB2019ZY003)the National Natural Science Foundation of China(31871220 and 31801444)+2 种基金the Innovation Project of State Key Laboratory of Tree Genetics andBreeding(Northeast Forestry University)(2013A06)the Fundamental Research Funds for the Central Universities(2572017DA06 and 2572020DP01)Heilongjiang Provincial Natural Science Foundation of China(LH2021C005).
文摘The Betula genus contains pentacyclic triterpenoid betulin known for its environmental adaptation and medicinal properties.However,the mechanisms underlying betulin biosynthesis responding to climate change remain unclear.In this study,the role of epigenetic modification(DNA methylation) in betulin biosynthesis was examined and how climatic factors influence it.Whole-genome bisulfite sequencing was performed for greenhouse-grown Chinese white birch(Betula platyphylla Sukaczev) treated with DNA methylation inhibitor zebularine(ZEB) and a natural birch population in Northeast China.ZEB treatment significantly affected the CHH methylation level of transposable elements and betulin content in a hormesis dose-dependent manner.The methylation and expression of bHLH9,a key transcriptional factor controlling betulin biosynthesis,were also consistently affected by ZEB treatment as a hormetic dose-response.In the natural population,there was a positive correlation between promoter methylation of bHLH9 and summer precipitation,while winter temperature was negatively correlated.Thus climate-dependent methylation of bHLH9 regulates the expression of downstream genes involved in betulin biosynthesis.This study highlights the role of environmental signals to induce epigenetic changes that result in betulin production,possibly helping to develop resilient plants to combat ongoing climate change and enhance secondary metabolite production.
基金This work was supported by grants from Fundamental Research Funds of Chinese Academy of Forestry(CAFYBB2018ZY001-5 and CAFYBB2017ZY001)the National Natural Science Foundation of China(31670667)。
文摘High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The sc RNA-seq profiled9,798 cells, which were grouped into 12 clusters.Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations,we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type(cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.