In the current research process of coal rank char gasification reaction in China, it is found that particle size has different influence on the gasification reactivity of coal char of different ranks. Therefore, monod...In the current research process of coal rank char gasification reaction in China, it is found that particle size has different influence on the gasification reactivity of coal char of different ranks. Therefore, monodisperse pulverized coal was prepared from eight kinds of coal chars of different ranks in entrained-flow gasifier. The particle size and gasification temperature of coal char were analyzed for these samples. The degree of influence of carbon dioxide gasification reaction. Through research and analysis, the performance differences of these samples under different carbon conversion rates were compared, and the sample reaction under high carbon conversion rates was discussed. The experimental results show that the orderliness of the microcrystalline structure of coal char is directly proportional to the rank of coal, while the gasification activity of coal char is inversely proportional to the rank of coal. Therefore, for different coal ranks, the influence of coal char particle size on coal char gasification reaction is different. According to the experiments, smaller coal char size and higher gasification temperature can promote the reactivity of higher-order coal gasification. In order to clarify the correlation between particle size and gasification reactivity of coal chars with different ranks, this paper discussed this issue.展开更多
文摘In the current research process of coal rank char gasification reaction in China, it is found that particle size has different influence on the gasification reactivity of coal char of different ranks. Therefore, monodisperse pulverized coal was prepared from eight kinds of coal chars of different ranks in entrained-flow gasifier. The particle size and gasification temperature of coal char were analyzed for these samples. The degree of influence of carbon dioxide gasification reaction. Through research and analysis, the performance differences of these samples under different carbon conversion rates were compared, and the sample reaction under high carbon conversion rates was discussed. The experimental results show that the orderliness of the microcrystalline structure of coal char is directly proportional to the rank of coal, while the gasification activity of coal char is inversely proportional to the rank of coal. Therefore, for different coal ranks, the influence of coal char particle size on coal char gasification reaction is different. According to the experiments, smaller coal char size and higher gasification temperature can promote the reactivity of higher-order coal gasification. In order to clarify the correlation between particle size and gasification reactivity of coal chars with different ranks, this paper discussed this issue.