In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs...In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests.展开更多
该研究建立了水果中吗啉脂肪酸盐果蜡的气相色谱-三重四极杆质谱(gas chromatography-tandem mass spectrometry,GC-MS/MS)分析方法。样品使用改进QuEChERS(quick,easy,cheap,effective,rugged and safe)方法,经1%甲酸-乙腈提取,乙二胺...该研究建立了水果中吗啉脂肪酸盐果蜡的气相色谱-三重四极杆质谱(gas chromatography-tandem mass spectrometry,GC-MS/MS)分析方法。样品使用改进QuEChERS(quick,easy,cheap,effective,rugged and safe)方法,经1%甲酸-乙腈提取,乙二胺-N-丙基甲硅烷(PSA)和石墨化炭黑吸附剂(GCB)净化,使用5.5 mol/L盐酸和4.3 mol/L亚硝酸钠在冰浴条件下衍生3 h,以HP-FFAP毛细管柱进行分离,在电子轰击源(EI)和多反应监测模式下进行测定,基质曲线外标法定量。结果表明,吗啉脂肪酸盐通过亚硝基化反应可衍生成稳定的亚硝基吗啉(N-nitrosomorpholine,NMOR),目标衍生化合物峰形较好,在1~800μg/L范围内线性良好,相关系数大于0.99,检出限为0.14~1.09μg/kg,定量限为0.47~3.63μg/kg,加标回收率范围为73.6%~118.5%,相对标准偏差(RSD)为3.6%~15.2%(n=6)。该方法准确、高效,在实际样本中检出率较高,适用于水果中吗啉脂肪酸盐果蜡的定性和定量检测。展开更多
The effects of understory plant litter on domi- nant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two under...The effects of understory plant litter on domi- nant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species (Artemisia scoparia and Setaria viridis) litter on the mass loss and N release of Mongolian pine (Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monocul- ture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cel- lulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation.The chemistry of pine litter not only changed with the stages of decomposition, but was also strongly influenced by the presence of understory species during decomposition. Both understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at 182 days. Mass loss of pine litter was negatively correlated with initial ratios of C/N, lignin/N and polyphenol/N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C/N and polyphenol/N of litter combinations at 84 days of incubation. Nitrogen release of pine litter was promoted in the presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter com- binations at 84 days of incubation. Our results suggest that the presence ofunderstory species causes substantial changes in chemical components of pine litter that can exert strong influences on subsequent decomposition of pine litter.展开更多
A patient with an apparent sporadic medullary thyroid carcinoma was tested for RET germline mutations by Sanger sequencing of RET exons 10, 11, and 13-16. The patient was heterozygous for two known mutations causative...A patient with an apparent sporadic medullary thyroid carcinoma was tested for RET germline mutations by Sanger sequencing of RET exons 10, 11, and 13-16. The patient was heterozygous for two known mutations causative of Multiple Endocrine Neoplasia type 2 disorder, and both mutations were within codon 620 of RET exon 10, c.1859G > T (p.C620F) and c.1860C > G (p.C620W). In order to determine if these adjacent mutations were in cis or in trans, an unlabeled probe method and high-resolution melting analysis were utilized. The mutations were confirmed to occur in cis, representing a novel mutation, c.1859_1860delinsTG (p.C620L). Sanger sequencing of parental samples did not identify any changes at codon 620, so the p.C620L mutation is also de novo. The early age of onset for medullary thyroid carcinoma and the presence of lymph node metastasis in this patient suggests individuals with the p.C620L mutation should be treated and screened (for pheochromocytomas and parathyroid hyperplasia) as Multiple Endocrine Neoplasia type 2 patients with other RET codon 620 mutations (American Thyroid Association risk level B).展开更多
Aims Nutrient resorption is a crucial component of plant nutrient use strategy,yet the controls on the responses of community-level nutrient resorption to altered nutrient availability remain unclear.Here,we addressed...Aims Nutrient resorption is a crucial component of plant nutrient use strategy,yet the controls on the responses of community-level nutrient resorption to altered nutrient availability remain unclear.Here,we addressed two questions:(1)Did leaf and stem nutrient resorption respond consistently to increased nutrient availability?(2)Was community-level plant nutrient resorption response after nutrient enrichment driven by the intraspecific plasticity in plant nutrient resorption or by altered species composition?Methods We investigated the changes in aboveground biomass,and leaf and stem nutrient resorption of individual species after 3-year nitrogen(N)and phosphorus(P)additions,and assessed community-level nutrient resorption response to 3-year nutrient additions in a graminoid-dominated temperate wetland,Northeast China.Important Findings For both leaves and stems,N and P additions did not affect nutrient resorption efficiency,but they decreased respective nutrient resorption proficiency.Similarly,community-level N and P resorption proficiency declined with respective nutrient addition.Community-level N and P resorption efficiency was reduced by N addition primarily due to altered community composition and declined leaf:stem ratio.These results suggest that leaf and stem nutrient resorption processes exhibit consistent responses to increasing nutrient availability in the temperate wetland.These findings highlight the importance of altered species composition and biomass allocation between leaf and stem in driving community-level nutrient resorption response to nutrient enrichment.展开更多
Aims Climate warming and increasing nitrogen(N)deposition have influenced plant nutrient status and thus plant carbon(C)fixation and vegetation composition in boreal peatlands.Phenols,which are secondary metabolites i...Aims Climate warming and increasing nitrogen(N)deposition have influenced plant nutrient status and thus plant carbon(C)fixation and vegetation composition in boreal peatlands.Phenols,which are secondary metabolites in plants for defense and adaptation,also play important roles in regulating peatland C dynamics due to their anti-decomposition properties.However,how the phenolic levels of different functional types of plants vary depending on nutrient availability remain unclear in boreal peatlands.Methods Here,we investigated total phenols contents(TPC)and total tannins contents in leaves of 11 plant species in 18 peatlands of the Great Hing’an Mountains area in northeastern China,and examined their variations with leaf N and phosphorus(P)and underlying mechanisms.Important Findings Shrubs had higher TPC than graminoids,indicating less C allocation to defense and less uptake of organic N in faster-growing and nonmycorrhizal graminoids than in slower-growing and mycorrhizal shrubs.For shrubs,leaf TPC decreased with increasing N contents but was not influenced by changing leaf phosphorus(P)contents,which suggested that shrubs would reduce the C investment for defense with increasing N availability.Differently,leaf TPC of graminoids increased with leaf N contents and decreased with leaf P contents.As graminoids are more N-limited and less P-limited,we inferred that graminoids would increase the defensive C investment under increased nutrient availability.We concluded that shrubs would invest more C in growth than in defense with increasing N availability,but it was just opposite for graminoids,which might be an important mechanism to explain the resource competition and encroachment of shrubs in boreal peatlands in the context of climate warming and ever-increasing N deposition.展开更多
Background:Nutrient resorption is an important plant nutrient conservation strategy in wetlands.However,how shrub encroachment alters plant nutrient resorption processes is unclear in temperate wetlands.Here,we collec...Background:Nutrient resorption is an important plant nutrient conservation strategy in wetlands.However,how shrub encroachment alters plant nutrient resorption processes is unclear in temperate wetlands.Here,we collected green and senesced leaves of common sedge,grass,and shrub species in wetlands with high(50–65%)and low(20–35%)shrub covers in the Sanjiang Plain of Northeast China,and assessed the impact of shrub encroachment on leaf nitrogen(N)and phosphorus(P)resorption efficiency and proficiency at both plant growth form and community levels.Results:The effects of shrub cover on leaf nutrient resorption efficiency and proficiency were identical among shrubs,grasses,and sedges.Irrespective of plant growth forms,increased shrub cover reduced leaf N resorption efficiency and proficiency,but did not alter leaf P resorption efficiency and proficiency.However,the effect of shrub cover on leaf nutrient resorption efficiency and proficiency differed between plant growth form and community levels.At the community level,leaf N and P resorption efficiency decreased with increasing shrub cover because of increased dominance of shrubs with lower leaf nutrient resorption efficiency over grasses and sedges.Accordingly,community‑level senesced leaf N and P concentrations increased with elevating shrub cover,showing a decline in leaf N and P resorption proficiency.Moreover,the significant relationships between leaf nutrient resorption efficiency and proficiency indicate that shrub encroachment increased senesced leaf nutrient concentrations by decreasing nutrient resorption efficiency.Conclusions:These observations suggest that shrub encroachment reduces community‑level leaf nutrient resorp‑tion efficiency and proficiency and highlight that the effect of altered plant composition on leaf nutrient resorption should be assessed at the community level in temperate wetlands.展开更多
基金National Natural Science Foundation of China(41771108 and 31570479)the Natural Science Foundation of Jiangxi,China(20212ACB215002
文摘In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests.
文摘该研究建立了水果中吗啉脂肪酸盐果蜡的气相色谱-三重四极杆质谱(gas chromatography-tandem mass spectrometry,GC-MS/MS)分析方法。样品使用改进QuEChERS(quick,easy,cheap,effective,rugged and safe)方法,经1%甲酸-乙腈提取,乙二胺-N-丙基甲硅烷(PSA)和石墨化炭黑吸附剂(GCB)净化,使用5.5 mol/L盐酸和4.3 mol/L亚硝酸钠在冰浴条件下衍生3 h,以HP-FFAP毛细管柱进行分离,在电子轰击源(EI)和多反应监测模式下进行测定,基质曲线外标法定量。结果表明,吗啉脂肪酸盐通过亚硝基化反应可衍生成稳定的亚硝基吗啉(N-nitrosomorpholine,NMOR),目标衍生化合物峰形较好,在1~800μg/L范围内线性良好,相关系数大于0.99,检出限为0.14~1.09μg/kg,定量限为0.47~3.63μg/kg,加标回收率范围为73.6%~118.5%,相对标准偏差(RSD)为3.6%~15.2%(n=6)。该方法准确、高效,在实际样本中检出率较高,适用于水果中吗啉脂肪酸盐果蜡的定性和定量检测。
基金funded by the National Natural Science Foundation of China(grant number 31270668)the State Key Laboratory of Forest and Soil Ecology(grant number LFSE2013-11)
文摘The effects of understory plant litter on domi- nant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species (Artemisia scoparia and Setaria viridis) litter on the mass loss and N release of Mongolian pine (Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monocul- ture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cel- lulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation.The chemistry of pine litter not only changed with the stages of decomposition, but was also strongly influenced by the presence of understory species during decomposition. Both understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at 182 days. Mass loss of pine litter was negatively correlated with initial ratios of C/N, lignin/N and polyphenol/N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C/N and polyphenol/N of litter combinations at 84 days of incubation. Nitrogen release of pine litter was promoted in the presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter com- binations at 84 days of incubation. Our results suggest that the presence ofunderstory species causes substantial changes in chemical components of pine litter that can exert strong influences on subsequent decomposition of pine litter.
文摘A patient with an apparent sporadic medullary thyroid carcinoma was tested for RET germline mutations by Sanger sequencing of RET exons 10, 11, and 13-16. The patient was heterozygous for two known mutations causative of Multiple Endocrine Neoplasia type 2 disorder, and both mutations were within codon 620 of RET exon 10, c.1859G > T (p.C620F) and c.1860C > G (p.C620W). In order to determine if these adjacent mutations were in cis or in trans, an unlabeled probe method and high-resolution melting analysis were utilized. The mutations were confirmed to occur in cis, representing a novel mutation, c.1859_1860delinsTG (p.C620L). Sanger sequencing of parental samples did not identify any changes at codon 620, so the p.C620L mutation is also de novo. The early age of onset for medullary thyroid carcinoma and the presence of lymph node metastasis in this patient suggests individuals with the p.C620L mutation should be treated and screened (for pheochromocytomas and parathyroid hyperplasia) as Multiple Endocrine Neoplasia type 2 patients with other RET codon 620 mutations (American Thyroid Association risk level B).
文摘Aims Nutrient resorption is a crucial component of plant nutrient use strategy,yet the controls on the responses of community-level nutrient resorption to altered nutrient availability remain unclear.Here,we addressed two questions:(1)Did leaf and stem nutrient resorption respond consistently to increased nutrient availability?(2)Was community-level plant nutrient resorption response after nutrient enrichment driven by the intraspecific plasticity in plant nutrient resorption or by altered species composition?Methods We investigated the changes in aboveground biomass,and leaf and stem nutrient resorption of individual species after 3-year nitrogen(N)and phosphorus(P)additions,and assessed community-level nutrient resorption response to 3-year nutrient additions in a graminoid-dominated temperate wetland,Northeast China.Important Findings For both leaves and stems,N and P additions did not affect nutrient resorption efficiency,but they decreased respective nutrient resorption proficiency.Similarly,community-level N and P resorption proficiency declined with respective nutrient addition.Community-level N and P resorption efficiency was reduced by N addition primarily due to altered community composition and declined leaf:stem ratio.These results suggest that leaf and stem nutrient resorption processes exhibit consistent responses to increasing nutrient availability in the temperate wetland.These findings highlight the importance of altered species composition and biomass allocation between leaf and stem in driving community-level nutrient resorption response to nutrient enrichment.
基金supported by the National Key Research and Development Program of China(2016YFA0600802)the National Natural Science Foundation of China(41730855,41522301)+1 种基金the Open Project Foundation in Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains,Ministry of Education(GPES201904)supported by the 11th Recruitment Program of Global Experts(the Thousand Talents Plan)for Young Professionals granted by the central budget of China.
文摘Aims Climate warming and increasing nitrogen(N)deposition have influenced plant nutrient status and thus plant carbon(C)fixation and vegetation composition in boreal peatlands.Phenols,which are secondary metabolites in plants for defense and adaptation,also play important roles in regulating peatland C dynamics due to their anti-decomposition properties.However,how the phenolic levels of different functional types of plants vary depending on nutrient availability remain unclear in boreal peatlands.Methods Here,we investigated total phenols contents(TPC)and total tannins contents in leaves of 11 plant species in 18 peatlands of the Great Hing’an Mountains area in northeastern China,and examined their variations with leaf N and phosphorus(P)and underlying mechanisms.Important Findings Shrubs had higher TPC than graminoids,indicating less C allocation to defense and less uptake of organic N in faster-growing and nonmycorrhizal graminoids than in slower-growing and mycorrhizal shrubs.For shrubs,leaf TPC decreased with increasing N contents but was not influenced by changing leaf phosphorus(P)contents,which suggested that shrubs would reduce the C investment for defense with increasing N availability.Differently,leaf TPC of graminoids increased with leaf N contents and decreased with leaf P contents.As graminoids are more N-limited and less P-limited,we inferred that graminoids would increase the defensive C investment under increased nutrient availability.We concluded that shrubs would invest more C in growth than in defense with increasing N availability,but it was just opposite for graminoids,which might be an important mechanism to explain the resource competition and encroachment of shrubs in boreal peatlands in the context of climate warming and ever-increasing N deposition.
基金funded by National Natural Science Foundation of China(31570479)。
文摘Background:Nutrient resorption is an important plant nutrient conservation strategy in wetlands.However,how shrub encroachment alters plant nutrient resorption processes is unclear in temperate wetlands.Here,we collected green and senesced leaves of common sedge,grass,and shrub species in wetlands with high(50–65%)and low(20–35%)shrub covers in the Sanjiang Plain of Northeast China,and assessed the impact of shrub encroachment on leaf nitrogen(N)and phosphorus(P)resorption efficiency and proficiency at both plant growth form and community levels.Results:The effects of shrub cover on leaf nutrient resorption efficiency and proficiency were identical among shrubs,grasses,and sedges.Irrespective of plant growth forms,increased shrub cover reduced leaf N resorption efficiency and proficiency,but did not alter leaf P resorption efficiency and proficiency.However,the effect of shrub cover on leaf nutrient resorption efficiency and proficiency differed between plant growth form and community levels.At the community level,leaf N and P resorption efficiency decreased with increasing shrub cover because of increased dominance of shrubs with lower leaf nutrient resorption efficiency over grasses and sedges.Accordingly,community‑level senesced leaf N and P concentrations increased with elevating shrub cover,showing a decline in leaf N and P resorption proficiency.Moreover,the significant relationships between leaf nutrient resorption efficiency and proficiency indicate that shrub encroachment increased senesced leaf nutrient concentrations by decreasing nutrient resorption efficiency.Conclusions:These observations suggest that shrub encroachment reduces community‑level leaf nutrient resorp‑tion efficiency and proficiency and highlight that the effect of altered plant composition on leaf nutrient resorption should be assessed at the community level in temperate wetlands.