In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF at...In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT) is designed to adjust the relation of position and attitude between the spher- ical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.展开更多
基金the National Natural Science Foundation of China (No. 50905105)Shanghai Municipal Natural Science Foundation (No. 13ZR1415800)+2 种基金the Innovation Program of Shanghai Municipal Education Commission of China (No. 14YZ008)the State Key Laboratory of Robotics and Systems of Harbin Institute of Technology (No. 2010MS02)the Jiangsu Key Laboratory of Advanced Robotic Technology of Soochow University (No. JAR201304)
文摘In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT) is designed to adjust the relation of position and attitude between the spher- ical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.