For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon material...For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon materials possess the following features:low cost,rich natural abundance,good thermal and chemical stability,as well as tunable surface properties and spatial structure.Therefore,the development of carbon materials and carbon-based composites has flourished in the anode of MFCs during the past years.In this review,the major carbon materials used to decorate MFC anodes have been systematically summarized,based on the differences in composition and structure.Moreover,we have also outlined the carbon material-based hybrid biofilms and carbon material-modified exoelectrogens in MFCs,along with the discussion of known strategies and mechanisms to enhance the bacteria-hosting capabilities of carbon material-based anodes,EET efficiencies,and MFC performances.Finally,the main challenges coupled with some exploratory proposals are also expounded for providing some guidance on the future development of carbon material-based anodes in MFCs.展开更多
Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent...Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent microspheres(DxFMs)and boric acid-modified carbon dots(BCDs)as recognition unit and built-in signal reference respectively,a ratiometric fluorescent detection platform was proposed for Con A detection with high reliability.In this protocol,the BCDs/DxFMs precipitation was formed due to the covalent interactions between cis-diol of DxFMs and boronic acid groups of BCDs,thus only fluorescence of BCDs could be detected in the supernatant.When Con A was presented,it could bind to DxFMs through its carbohydrate recognition ability and suppress the subsequent assembly between DxFMs and BCDs,leading to the simultaneous capture of DxFMs and BCDs fluorescence in the supernatant.Since the BCDs content was superfluous,their fluorescence intensities were basically constant in all cases.Based on the unchanged BCDs fluorescence signal and target-dependent DxFMs fluorescence signal in supernatant,the ratiometric detection of Con A was realized.Under optimized conditions,this ratiometric fluorescent platform displayed a linear detection range from 0.125μg/mL to 12.5μg/mL with a detection limit of 0.089μg/mL.Moreover,satisfied analytical outcomes for Con A detection in serum samples were obtained,manifesting huge application potential of this ratiometric fluorescent platform in clinical diagnosis.展开更多
基金the financial support from the National Natural Science Foundation of China(21804070,21974125)the starting fund from City University of Hong Kong and the 111 Project(D20015).
文摘For the performance improvement of microbial fuel cells(MFCs),the anode becomes a breakthrough point due to its influence on bacterial attachment and extracellular electron transfer(EET).On other level,carbon materials possess the following features:low cost,rich natural abundance,good thermal and chemical stability,as well as tunable surface properties and spatial structure.Therefore,the development of carbon materials and carbon-based composites has flourished in the anode of MFCs during the past years.In this review,the major carbon materials used to decorate MFC anodes have been systematically summarized,based on the differences in composition and structure.Moreover,we have also outlined the carbon material-based hybrid biofilms and carbon material-modified exoelectrogens in MFCs,along with the discussion of known strategies and mechanisms to enhance the bacteria-hosting capabilities of carbon material-based anodes,EET efficiencies,and MFC performances.Finally,the main challenges coupled with some exploratory proposals are also expounded for providing some guidance on the future development of carbon material-based anodes in MFCs.
基金supported by the Key Project of Science and Technology of Henan Province(No.212102310334)National Natural Science Foundation of China(Nos.21974125,22174131).
文摘Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent microspheres(DxFMs)and boric acid-modified carbon dots(BCDs)as recognition unit and built-in signal reference respectively,a ratiometric fluorescent detection platform was proposed for Con A detection with high reliability.In this protocol,the BCDs/DxFMs precipitation was formed due to the covalent interactions between cis-diol of DxFMs and boronic acid groups of BCDs,thus only fluorescence of BCDs could be detected in the supernatant.When Con A was presented,it could bind to DxFMs through its carbohydrate recognition ability and suppress the subsequent assembly between DxFMs and BCDs,leading to the simultaneous capture of DxFMs and BCDs fluorescence in the supernatant.Since the BCDs content was superfluous,their fluorescence intensities were basically constant in all cases.Based on the unchanged BCDs fluorescence signal and target-dependent DxFMs fluorescence signal in supernatant,the ratiometric detection of Con A was realized.Under optimized conditions,this ratiometric fluorescent platform displayed a linear detection range from 0.125μg/mL to 12.5μg/mL with a detection limit of 0.089μg/mL.Moreover,satisfied analytical outcomes for Con A detection in serum samples were obtained,manifesting huge application potential of this ratiometric fluorescent platform in clinical diagnosis.