The maximum flux density of a gyrosynchrotron radiation spectrum in a magnetic diploe model with self absorption and gyroresonance is calculated. Our calculations show that the maximum flux density of the gyrosynchrot...The maximum flux density of a gyrosynchrotron radiation spectrum in a magnetic diploe model with self absorption and gyroresonance is calculated. Our calculations show that the maximum flux density of the gyrosynchrotron spectrum increases with increasing low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle, and with decreasing energy spectral index of energetic electrons, number density and temperature of thermal electrons. It is found that there are linear correlations between the logarithms of the maximum flux density and the above eight parameters with correlation coefficients higher than 0.91 and fit accuracies better than 10%. The maximum flux density could be a good indicator of the changes of these source parameters. In addition, we find that there are very good positive linear correlations between the logarithms of the maximum flux density and peak frequency when the above former five parameters vary respectively. Their linear correlation coefficients are higher than 0.90 and the fit accuracies are better than 0.5%.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The maximum flux density of a gyrosynchrotron radiation spectrum in a magnetic diploe model with self absorption and gyroresonance is calculated. Our calculations show that the maximum flux density of the gyrosynchrotron spectrum increases with increasing low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle, and with decreasing energy spectral index of energetic electrons, number density and temperature of thermal electrons. It is found that there are linear correlations between the logarithms of the maximum flux density and the above eight parameters with correlation coefficients higher than 0.91 and fit accuracies better than 10%. The maximum flux density could be a good indicator of the changes of these source parameters. In addition, we find that there are very good positive linear correlations between the logarithms of the maximum flux density and peak frequency when the above former five parameters vary respectively. Their linear correlation coefficients are higher than 0.90 and the fit accuracies are better than 0.5%.