期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel 被引量:5
1
作者 rong-jian shi Zi-dong Wang +1 位作者 Li-jie Qiao Xiao-lu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期644-656,共13页
We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenc... We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement(HE)of high-strength steel.The results reveal that the mechanical strength and elongation of quenched and tempered steel(919 MPa yield strength,17.11%elongation)are greater than those of hot-rolled steel(690 MPa yield strength,16.81%elongation)due to the strengthening effect of insitu Ti_(3)O_(5)–Nb(C,N)nanoparticles.In addition,the HE susceptibility is substantially mitigated to 55.52%,approximately 30%lower than that of steels without in-situ nanoparticles(84.04%),which we attribute to the heterogeneous nucleation of the Ti_(3)O_5 nanoparticles increasing the density of the carbides.Compared with hard TiN inclusions,the spherical and soft Al_(2)O_(3)–MnS core–shell inclusions that nucleate on in-situ Al_(2)O_(3) particles could also suppress HE.In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels. 展开更多
关键词 in-situ nanoparticles hydrogen embrittlement high-strength steel mechanical properties MICROSTRUCTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部