The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose t...The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose the Attention Based Dense Network(ASDNet)for the stratigraphic correlation of well logs.To implement the suggested model,we first employ the attention mechanism to the input well logs,which can effectively generate the weighted well logs to serve for further feature extraction.Subsequently,the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing.After model training,we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China.Finally,the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet.展开更多
基金supported by the Key Research and Development Program of Shaanxi,China under Grant 2023-YBGY-076the Fundamental Research Funds for the Central Universities,China under Grant XZY012022086the China Postdoctoral Science Foundation Project under Grant 2022M712509.
文摘The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs.However,it suffers from a small amount of training data and expensive computing time.In this work,we propose the Attention Based Dense Network(ASDNet)for the stratigraphic correlation of well logs.To implement the suggested model,we first employ the attention mechanism to the input well logs,which can effectively generate the weighted well logs to serve for further feature extraction.Subsequently,the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing.After model training,we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China.Finally,the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet.