Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttl...Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.展开更多
The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their...The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.展开更多
Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this stu...Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.展开更多
China has participated in the WTO for ten years. It can be divided into two stages, which have different features for the firstfive years and the second five years. As China has become the new emerging power in the WT...China has participated in the WTO for ten years. It can be divided into two stages, which have different features for the firstfive years and the second five years. As China has become the new emerging power in the WTO, many comments have focused on its participation in the WTO, especially its practice in the DSM. China, as a new member in the WTO, is not very aggressive, and all the challenges and issues to be settled largely depend on its participation capacity in the WTO.展开更多
基金the financially supports from the National Natural Science Foundation of China(51963004)the Natural Science Foundation of Shandong Province of China(ZR2020MB024)。
文摘Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.
基金the Natural Science Foundation of Shandong Province of China (Grant No.ZR2020MB024)for financially supporting this work.
文摘The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability.Considering the close connection between their performance and the amount of carbon material loaded on the electrodes,in this work,NiCo_(2)O_(4) nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction.Then,the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo_(2)O_(4) nanowires,and the obtained composite was used as electrode for electric double layer capacitor.The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF·cm^(-2) at the current density of 1 mA·cm^(-2).The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW·h·cm^(-3) at a power density of 180 mW·cm^(-3).The assembled symmetric capacitor exhibited a capacitance retention of 88.96%after 10000 charge/discharge cycles at the current density of 20 mA·cm^(-2).These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.
基金The authors would like to thank the National Natural Science Foundation of China(Nos.51661008 and 21766032)Key Technology Research and Development Program of Shandong(No.2019GGX103029)for financially supporting this work.
文摘Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.
文摘China has participated in the WTO for ten years. It can be divided into two stages, which have different features for the firstfive years and the second five years. As China has become the new emerging power in the WTO, many comments have focused on its participation in the WTO, especially its practice in the DSM. China, as a new member in the WTO, is not very aggressive, and all the challenges and issues to be settled largely depend on its participation capacity in the WTO.