Urbanization and the increasing frequency of extreme climates affect the sustainability of urban public transportation systems,and improving resilience is one of the primary directions for sustainable development.To s...Urbanization and the increasing frequency of extreme climates affect the sustainability of urban public transportation systems,and improving resilience is one of the primary directions for sustainable development.To scientifically assess the resilience of urban public transportation systems,a resilience assessment model based on structure and function is established in this study.This model mathematically quantifies and simulates the structural and functional changes in public transportation systems under disruption scenarios and provides a comprehensive assessment of six abilities:1)structural resistance,2)structural recoverability,3)functional resistance,4)functional recoverability,5)passenger adaptability,and 6)management adaptability.Depending on the initial failure stations,this model can simulate the resilience of a public transportation system under various scenarios.This model is applied to assess the resilience of public transportation systems in a provincial capital city under an equipment failure scenario.The results show that the impact of equipment failure on resilience varies according to the metro lines,and improvement strategies for functional recoverability and management adaptability are proposed.The weaknesses in the resilience of urban public transportation systems can be identified using the proposed model,which helps provide strategies for improving the capacity to face perturbations.展开更多
基金This work is financially supported by the National Key Research and Development Program of China(2021YFC3090403)the National Natural Science Foundation of China(72091512)the Fundamental Research Funds for the Central Universities of Central South University(2023ZZTS0689).
文摘Urbanization and the increasing frequency of extreme climates affect the sustainability of urban public transportation systems,and improving resilience is one of the primary directions for sustainable development.To scientifically assess the resilience of urban public transportation systems,a resilience assessment model based on structure and function is established in this study.This model mathematically quantifies and simulates the structural and functional changes in public transportation systems under disruption scenarios and provides a comprehensive assessment of six abilities:1)structural resistance,2)structural recoverability,3)functional resistance,4)functional recoverability,5)passenger adaptability,and 6)management adaptability.Depending on the initial failure stations,this model can simulate the resilience of a public transportation system under various scenarios.This model is applied to assess the resilience of public transportation systems in a provincial capital city under an equipment failure scenario.The results show that the impact of equipment failure on resilience varies according to the metro lines,and improvement strategies for functional recoverability and management adaptability are proposed.The weaknesses in the resilience of urban public transportation systems can be identified using the proposed model,which helps provide strategies for improving the capacity to face perturbations.