期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Initial Microstructure Prior to Extrusion on the Microstructure and Mechanical Properties of Extruded AZ80 Alloy with a Low Temperature and a Low Ratio
1
作者 Hang Zhang Haipeng li +4 位作者 rongguang li Boshu liu Ruizhi Wu Dongyue Zhao Shanshan li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期339-349,共11页
Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica... Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction. 展开更多
关键词 Magnesium alloy Low temperature and low ratio extrusion Bimodal grain structure Dynamic precipitate Dynamic recrystallization
下载PDF
Development of extruded Mg-6Er-3Y-1.5Zn-0.4Mn(wt.%) alloy with high strength at elevated temperature 被引量:5
2
作者 Mingquan Zhang Yan Feng +6 位作者 Jinghuai Zhang Shujuan liu Qiang Yang Zhuang liu rongguang li Jian Meng Ruizhi Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第10期2365-2374,共10页
A new Mg-6 Er-3 Y-1.5 Zn-0.4 Mn(wt.%) alloy with high strength at high temperature was designed and extruded at 350℃. The as-extruded alloy exhibits ultimate tensile strength of 301 MPa, yield strength(along ED) of 2... A new Mg-6 Er-3 Y-1.5 Zn-0.4 Mn(wt.%) alloy with high strength at high temperature was designed and extruded at 350℃. The as-extruded alloy exhibits ultimate tensile strength of 301 MPa, yield strength(along ED) of 274 MPa and thermal conductivity of 73 W/m·K at 300℃. Such outstanding hightemperature strength is mainly attributed to the formation of nano-spaced solute-segregated basal plane stacking faults(SFs) with a large aspect ratio throughout the entire Mg matrix, fine dynamically recrystallized(DRXed) grains of 1–2μm and strongly textured un-DRXed grains with numerous sub-structures.Microstructural examination unveils that long period stacking ordered(LPSO) phases are formed in Mg matrix of the as-cast alloy when rational design of alloy composition was employed, i.e.(Er + Y): Zn = 3:1 and Er: Y = 1: 1(at.%). It is worth mentioning that it is the first report regarding the formation of nano-spaced basal plane SFs throughout both DRXed and un-DRXed grains in as-extruded alloy with well-designed compositions and processing parameters. The results provide new opportunities to the development of deformed Mg alloys with satisfactory mechanical performance for high-temperature services. 展开更多
关键词 Mg alloys STACKING FAULTS Mechanical properties Thermal conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部