Effective sealing of wet,dynamic and concealed wounds remains a formidable challenge in clinical practice.Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly,but they face limit...Effective sealing of wet,dynamic and concealed wounds remains a formidable challenge in clinical practice.Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly,but they face limitations in dynamic and moist environments.To address this issue,we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling.This network is formed by combining the spherical structure of lysozyme(LZM)with the orthotetrahedral structure of 4-arm-polyethylene glycol(4-arm-PEG).We have achieved exceptional sprayability by controlling the pH of the precursor solution.The homogeneous network,constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS,provides the hydrogel with outstanding fatigue resistance,low swelling and sustained adhesion.In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing,while in vivo experiments showed adhesion maintenance exceeding 24 h.Furthermore,the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage,lung air leakage and rat oral ulcers,surpassing commonly used clinical materials.Therefore,our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet,dynamic and concealed wounds.展开更多
Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of in...Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.展开更多
基金supported by the National Key Research and Development Program(2021YFB3800800)the National Natural Science Foundation of China(31922041,32171341,and 32301113)+5 种基金the 111 Project(B14018)the Science and Technology Innovation Project and Excellent Academic Leader Project of Shanghai Science and Technology Committee(21S31901500 and 21XD1421100)the National Postdoctoral Program for Innovative Talents(BX20230122)Shanghai Sailing Program(23YF1409700)Shanghai Postdoctoral Excellence Program(2022157)China Postdoctoral Science Foundation(2022M721136)。
基金supported by the National key research and development program(2021YFB3800800)the National Natural Science Foundation of China(31922041,11932012,32171341,82202334)+2 种基金the 111 Project(B14018)Excellence Project of Shanghai Municipal Health Commission(20234Z0003)the Science and Technology Innovation Project and Excellent Academic Leader Project of Shanghai Science and Technology Committee(21S31901500,21XD1421100)are acknowledged.
文摘Effective sealing of wet,dynamic and concealed wounds remains a formidable challenge in clinical practice.Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly,but they face limitations in dynamic and moist environments.To address this issue,we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling.This network is formed by combining the spherical structure of lysozyme(LZM)with the orthotetrahedral structure of 4-arm-polyethylene glycol(4-arm-PEG).We have achieved exceptional sprayability by controlling the pH of the precursor solution.The homogeneous network,constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS,provides the hydrogel with outstanding fatigue resistance,low swelling and sustained adhesion.In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing,while in vivo experiments showed adhesion maintenance exceeding 24 h.Furthermore,the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage,lung air leakage and rat oral ulcers,surpassing commonly used clinical materials.Therefore,our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet,dynamic and concealed wounds.
基金the National Key Research and Development Program,No.2021YFB3800800the National Natural Science Foundation of China,Nos.31922041,32171341,32301113,the 111 Project,No.B14018+3 种基金the Science and Technology Innovation Project and Excellent Academic Leader Project of Shanghai Science and Technology Committee,Nos.21S31901500,21XD1421100the National Postdoctoral Program for Innovative Talents,No.BX20230122the Shanghai Sailing Program,No.23YF1409700the China Postdoctoral Science Foundation,No.D100-5R-22114.
文摘Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.