In order to apply lithium hydroxide(LiOH)as a low temperature chemical heat storage material,the carbonation reaction of LiOH and the prevention method are focused in this research.The carbonation of raw LiOH at stora...In order to apply lithium hydroxide(LiOH)as a low temperature chemical heat storage material,the carbonation reaction of LiOH and the prevention method are focused in this research.The carbonation of raw LiOH at storage and hydration condition is experimentally investigated.The results show that the carbonation reaction of LiOH with carbon dioxide(CO_(2))is confirmed during the hydration reaction.The carbonation of LiOH can be easily carried out with CO_(2) at room temperature and humidity.LiOH can be carbonated at a humidity range of 10%to 20%,a normal humidity region that air can easily be reached.Furthermore,the carbonation reaction rate has not nearly affected by the increase of reaction temperature.An improved storage method by storing LiOH at a low humidity less than 1.0%can be effectively prevented the carbonation of LiOH.The hydration reaction ratio of LiOH at the improved storage method shows a better result compared to the ordinary storage method.Therefore,the humidity should be carefully controlled during the storage of LiOH before hydration and dehydration reaction when apply LiOH as a low heat chemical storage material.展开更多
Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers...Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010.展开更多
基金This work was supported by“Knowledge Hub Aichi,”Priority Research Project from Aichi Prefectural Government,Japan,Leading Key Projects of Chinese Academy of Sciences(No.QYZDYSSW-JSC038)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory,Guangzhou(GML2019ZD0108)Science and Technology Planning Project of Guangdong Province,China(No.2017A050501046).
文摘In order to apply lithium hydroxide(LiOH)as a low temperature chemical heat storage material,the carbonation reaction of LiOH and the prevention method are focused in this research.The carbonation of raw LiOH at storage and hydration condition is experimentally investigated.The results show that the carbonation reaction of LiOH with carbon dioxide(CO_(2))is confirmed during the hydration reaction.The carbonation of LiOH can be easily carried out with CO_(2) at room temperature and humidity.LiOH can be carbonated at a humidity range of 10%to 20%,a normal humidity region that air can easily be reached.Furthermore,the carbonation reaction rate has not nearly affected by the increase of reaction temperature.An improved storage method by storing LiOH at a low humidity less than 1.0%can be effectively prevented the carbonation of LiOH.The hydration reaction ratio of LiOH at the improved storage method shows a better result compared to the ordinary storage method.Therefore,the humidity should be carefully controlled during the storage of LiOH before hydration and dehydration reaction when apply LiOH as a low heat chemical storage material.
基金supported by the National Natural Science Foundation of China(No.10971145)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100181110073)the Science&Technology Program of Sichuan Province(No.2013JY0125)
文摘Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010.