A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting ...A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.展开更多
文摘A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.