期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intrinsic correlation between the generalized phase equilibrium condition and mechanical behaviors in hydrate-bearing sediments
1
作者 Jiazuo Zhou Changfu Wei +2 位作者 rongtao yan Yuan Zhou Yi Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2822-2832,共11页
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ... The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves. 展开更多
关键词 Hydrate-bearing sediment Generalized phase equilibrium Unhydrated water Partial dissociation Mechanical behavior
下载PDF
Effect of coral sand on the mechanical properties and hydration mechanism of magnesium potassium phosphate cement mortar
2
作者 Hao LIU Huamei yanG +3 位作者 Houzhen WEI Jining YU Qingshan MENG rongtao yan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第2期116-129,共14页
Damaged structures on coral islands have been spalling and cracking due to the dual corrosion of tides and waves.To ensure easy access to aggregate materials,magnesium potassium phosphate cement(MKPC)and coral sand(CS... Damaged structures on coral islands have been spalling and cracking due to the dual corrosion of tides and waves.To ensure easy access to aggregate materials,magnesium potassium phosphate cement(MKPC)and coral sand(CS)are mixed to repair damaged structures on coral islands.However,CS is significantly different from land-sourced sand in mineral composition,particle morphology,and strength.This has a substantial impact on the hydration characteristics and macroscopic properties of MKPC mortar.Therefore,in this study we investigated the compressive strength,interfacial mechanical properties,and corrosion resistance of MKPC CS mortar.Changes in the morphology,microstructure,and relative contents of hydration products were revealed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)and X-ray diffraction(XRD).The results indicated that the compressive strength increased linearly with the interfacial micro-hardness,and then stabilized after long-term immersion in pure water and Na2SO4 solution,showing excellent corrosion resistance.Compared with MKPC river sand(RS)mortar,the hydration products of CS mortar were an intermediate product 6KPO2·8H2O with a relative content of 3.9%at 1 h and 4.1%at 12 h.The hydration product MgKPO_(4)·6H_(2)O increased rapidly after 7-d curing,with an increased growth rate of 1100%.Our results showed that CS promoted the nucleation and formation of hydration products of MKPC,resulting in better crystallinity,tighter overlapping,and a denser interfacial transition zone.The results of this study provide technical support for applying MKPC mortar as a rapid repair material for damaged structures on coral islands. 展开更多
关键词 Magnesium potassium phosphate cement(MKPC) Coral sand(CS) Mechanical properties Corrosion resistance Hydration mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部