Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In thi...Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In this work,we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations.We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling.In addition,we also demonstrate controllable manipulation of individual skyrmion,which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.展开更多
The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ...The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.展开更多
Dehydro-Diels-Alder(DDA)reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis.In this work,using multiple characterization techniques,we demonstrate...Dehydro-Diels-Alder(DDA)reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis.In this work,using multiple characterization techniques,we demonstrate that the bowl-shaped clusters C_(18)Te_(3)Br_(4)(Bu-O)_(6) might experience a DDA reaction at room temperature and high pressure between 5.5 and 7.4 GPa.Above 17.0 GPa,it is found that the bonding conversion from the intramolecular sp^(2) to the intermolecular spa occurred,in the form of pressure-induced diamondization.The recovered samples from 20.0 and 36.1 GPa showed incomplete reversibility,while the decompression-induced graphitization of glassy carbon was observed during decompression from 46.5 GPa.The electrochemical impedance spectroscopy results indicated that the transport properties changed from grain boundary dominant to grain dominant due to the DDA reaction and the grain boundary effect disappeared as the intermolecular sp3 bonding building-up and carrier transmission channel formation above 17.0 GPa.The results in this study open a new route to construct the crystalline carbon materials with different transport properties.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2021YFB3502400 and 2022YFA1403601)the National Natural Science Foundation of China(Grant Nos.12274204,12274203,51831005,52172270,11974165,92165103,51971110,12004329,and 12241402).
文摘Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In this work,we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations.We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling.In addition,we also demonstrate controllable manipulation of individual skyrmion,which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.
基金Project supported by the National Natural Science Foundation of China(Grant No.12004329)Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR2115)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX22_1704)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University,China(Grant Nos.YZ202026301 and YZ202026306)。
文摘The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.
基金This work was supported by the National Natural Science Foundation of China(Nos.52090020 and 11874076)the National Research Foundation of Korea(Nos.2016K1A4A3914691 and 2018R1DA1B070498).
文摘Dehydro-Diels-Alder(DDA)reaction is a textbook reaction for preparing six-membered rings in solution but is scarcely seen in solid-state synthesis.In this work,using multiple characterization techniques,we demonstrate that the bowl-shaped clusters C_(18)Te_(3)Br_(4)(Bu-O)_(6) might experience a DDA reaction at room temperature and high pressure between 5.5 and 7.4 GPa.Above 17.0 GPa,it is found that the bonding conversion from the intramolecular sp^(2) to the intermolecular spa occurred,in the form of pressure-induced diamondization.The recovered samples from 20.0 and 36.1 GPa showed incomplete reversibility,while the decompression-induced graphitization of glassy carbon was observed during decompression from 46.5 GPa.The electrochemical impedance spectroscopy results indicated that the transport properties changed from grain boundary dominant to grain dominant due to the DDA reaction and the grain boundary effect disappeared as the intermolecular sp3 bonding building-up and carrier transmission channel formation above 17.0 GPa.The results in this study open a new route to construct the crystalline carbon materials with different transport properties.