Chirality is ubiquitous in natural world.Although with similar physical and chemical properties,chiral enantiomers could play different roles in biochemical processes.Discrimination of chiral enantiomers is extremely ...Chirality is ubiquitous in natural world.Although with similar physical and chemical properties,chiral enantiomers could play different roles in biochemical processes.Discrimination of chiral enantiomers is extremely important in biochemical,analytical chemistry,and pharmaceutical industries.Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules.Recently,superchiral fields were proposed to effectively enhance the interaction between light and molecules,allowing for ultrasensitive chiral detection.Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing.In this review,we present a survey on these works.We begin with the introduction of chiral properties of electromagnetic fields.Then,the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively.Finally,we give a short summary and a perspective for the future ultrasensitive chiral sensing.展开更多
Generation of circular dichroism (CD) beyond the UV region is of great interest in developing chiral sensors and chiroptical devices. Herein, we demonstrate a simple and versatile method for fabrication of plasmonic...Generation of circular dichroism (CD) beyond the UV region is of great interest in developing chiral sensors and chiroptical devices. Herein, we demonstrate a simple and versatile method for fabrication of plasmonic oligomers with strong CD response in the visible and near IR spectral range. The oligomers were fabricated by triggering the side-by-side assembly of cysteine-modified gold nanorods. The modified nanorods themselves did not exhibit obvious plasmonic CD signals; however, the oligomers show strong CD bands around the plasmon resonance wavelength. The sign of the CD band was dictated by the chirality of the absorbed cysteine molecules. By adjusting the size of the oligomers, the concentration of chiral molecules, and/or the aspect ratio of the nanorods, the CD intensity and spectral range were readily tunable. Theoretical calculations suggested that CD of the oligomers originated from a slight twist of adjacent nanorods within the oligomer. Therefore, we propose that the adsorbed chiral molecules are able to manipulate the twist angles between the nanorods and thus modulate the CD response of the oligomers.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91850205 and 11904021).
文摘Chirality is ubiquitous in natural world.Although with similar physical and chemical properties,chiral enantiomers could play different roles in biochemical processes.Discrimination of chiral enantiomers is extremely important in biochemical,analytical chemistry,and pharmaceutical industries.Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules.Recently,superchiral fields were proposed to effectively enhance the interaction between light and molecules,allowing for ultrasensitive chiral detection.Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing.In this review,we present a survey on these works.We begin with the introduction of chiral properties of electromagnetic fields.Then,the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively.Finally,we give a short summary and a perspective for the future ultrasensitive chiral sensing.
文摘Generation of circular dichroism (CD) beyond the UV region is of great interest in developing chiral sensors and chiroptical devices. Herein, we demonstrate a simple and versatile method for fabrication of plasmonic oligomers with strong CD response in the visible and near IR spectral range. The oligomers were fabricated by triggering the side-by-side assembly of cysteine-modified gold nanorods. The modified nanorods themselves did not exhibit obvious plasmonic CD signals; however, the oligomers show strong CD bands around the plasmon resonance wavelength. The sign of the CD band was dictated by the chirality of the absorbed cysteine molecules. By adjusting the size of the oligomers, the concentration of chiral molecules, and/or the aspect ratio of the nanorods, the CD intensity and spectral range were readily tunable. Theoretical calculations suggested that CD of the oligomers originated from a slight twist of adjacent nanorods within the oligomer. Therefore, we propose that the adsorbed chiral molecules are able to manipulate the twist angles between the nanorods and thus modulate the CD response of the oligomers.