In this paper, we developed a rapid and accurate method for the detection of Vibrio parahaemolyticus strains, using multiplex PCR and DNA--DNA hybridization. Multiplex PCR was used to simultaneously amplify three diag...In this paper, we developed a rapid and accurate method for the detection of Vibrio parahaemolyticus strains, using multiplex PCR and DNA--DNA hybridization. Multiplex PCR was used to simultaneously amplify three diagnostic genes (tlh, tdh andfla) that serve as molecular markers of V. parahaemolyticus. Biotinylated PCR products were hybridized to primers immobilized on a microarray, and detected by chemiluminesce with avidin-conjugated alkaline phosphatase. With this method, forty-five samples were tested. Eight known virulent strains (tlh+/tdh+/fla+) and four known avirulent strains (tlh+/tdh /fla+) of the V. parahaemolyticus were successfully detected, and no non-specific hybridization and cross-hybridization reaction were found from fifteen closely-related strains (tlh-/tdh-/fla+) of the Vibrio spp. In addition, all the other eighteen strains of non-Vibrio bacteria (tlh-/tdh /fla-) gave negative results. The DNA microarray successfully distinguished V. parahaemolyticus from other Vibrio spp. The results demonstrated that this was an efficient and robust method for identifying virulent strains of V. parahaemolyticus.展开更多
Electrocatalytic water splitting offers a sustainable route for hydrogen production,enabling the clean and renewable alternative energy system of hydrogen economy.The scarcity and high-cost of platinum-group-metal(PGM...Electrocatalytic water splitting offers a sustainable route for hydrogen production,enabling the clean and renewable alternative energy system of hydrogen economy.The scarcity and high-cost of platinum-group-metal(PGM)materials urge the exploration of high-performance non-PGM electrocatalysts.Herein,a unique hierarchical structure of NiA/2O3 with extraordinary electrocatalytic performance(e.g.t overpotentials as low as 22 mV at 20 mA·cm^-2 and 94 mV at 100 mA·cm^-2)toward hydrogen evolution reaction in alkaline electrolyte(1 M KOH)is reported.The investigation on the hierarchical NiA/2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper NiA/2O3 interface can effectively improve H20 adsorption,H20 dissociation as well as H adsorption,for an efficient hydrogen production.展开更多
基金financial supports from National High Technology Research and Development Program of China(No.2007AA10Z430)National Natural Science Foundation of China(No.30700535)Program for New Century Excellent Talents in Fujian Province University,and Fok Ying Tong Education Foundation(No.111032)
文摘In this paper, we developed a rapid and accurate method for the detection of Vibrio parahaemolyticus strains, using multiplex PCR and DNA--DNA hybridization. Multiplex PCR was used to simultaneously amplify three diagnostic genes (tlh, tdh andfla) that serve as molecular markers of V. parahaemolyticus. Biotinylated PCR products were hybridized to primers immobilized on a microarray, and detected by chemiluminesce with avidin-conjugated alkaline phosphatase. With this method, forty-five samples were tested. Eight known virulent strains (tlh+/tdh+/fla+) and four known avirulent strains (tlh+/tdh /fla+) of the V. parahaemolyticus were successfully detected, and no non-specific hybridization and cross-hybridization reaction were found from fifteen closely-related strains (tlh-/tdh-/fla+) of the Vibrio spp. In addition, all the other eighteen strains of non-Vibrio bacteria (tlh-/tdh /fla-) gave negative results. The DNA microarray successfully distinguished V. parahaemolyticus from other Vibrio spp. The results demonstrated that this was an efficient and robust method for identifying virulent strains of V. parahaemolyticus.
基金The work is supported by the National Natural Science Foundation of China(Nos.11874005,21701153,51601030 and 21773023).
文摘Electrocatalytic water splitting offers a sustainable route for hydrogen production,enabling the clean and renewable alternative energy system of hydrogen economy.The scarcity and high-cost of platinum-group-metal(PGM)materials urge the exploration of high-performance non-PGM electrocatalysts.Herein,a unique hierarchical structure of NiA/2O3 with extraordinary electrocatalytic performance(e.g.t overpotentials as low as 22 mV at 20 mA·cm^-2 and 94 mV at 100 mA·cm^-2)toward hydrogen evolution reaction in alkaline electrolyte(1 M KOH)is reported.The investigation on the hierarchical NiA/2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper NiA/2O3 interface can effectively improve H20 adsorption,H20 dissociation as well as H adsorption,for an efficient hydrogen production.