Inflammatory bowel diseases(IBDs), namely Crohn's disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origi...Inflammatory bowel diseases(IBDs), namely Crohn's disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origin of IBDs is closely linked to immune response alterations, which governs most medical decision-making, recent findings suggest that gut microbiota may be involved in IBD pathogenesis. Epidemiologic evidence and several studies have shown that a dysregulation of gut microbiota(i.e., dysbiosis) may trigger the onset of intestinal disorders such as IBDs. Animal and human investigations focusing on the microbiota-IBD relationship have suggested an altered balance of the intestinal microbial population in the active phase of IBD. Rigorous microbiota typing could, therefore, soon become part of a complete phenotypic analysis of IBD patients. Moreover, individual susceptibility and environmental triggers such as nutrition, medications, age or smoking could modify bacterial strains in the bowel habitat. Pharmacological manipulation of bowel microbiota is somewhat controversial. The employment of antibiotics, probiotics, prebiotics and synbiotics has been widely addressed in theliterature worldwide, with the aim of obtaining positive results in a number of IBD patient settings, and determining the appropriate timing and modality of this intervention. Recently, novel treatments for IBDs, such as fecal microbiota transplantation, when accepted by patients, have shown promising results. Controlled studies are being designed. In the near future, new therapeutic strategies can be expected, with non-pathogenic or modified food organisms that can be genetically modified to exert anti-inflammatory properties.展开更多
文摘Inflammatory bowel diseases(IBDs), namely Crohn's disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origin of IBDs is closely linked to immune response alterations, which governs most medical decision-making, recent findings suggest that gut microbiota may be involved in IBD pathogenesis. Epidemiologic evidence and several studies have shown that a dysregulation of gut microbiota(i.e., dysbiosis) may trigger the onset of intestinal disorders such as IBDs. Animal and human investigations focusing on the microbiota-IBD relationship have suggested an altered balance of the intestinal microbial population in the active phase of IBD. Rigorous microbiota typing could, therefore, soon become part of a complete phenotypic analysis of IBD patients. Moreover, individual susceptibility and environmental triggers such as nutrition, medications, age or smoking could modify bacterial strains in the bowel habitat. Pharmacological manipulation of bowel microbiota is somewhat controversial. The employment of antibiotics, probiotics, prebiotics and synbiotics has been widely addressed in theliterature worldwide, with the aim of obtaining positive results in a number of IBD patient settings, and determining the appropriate timing and modality of this intervention. Recently, novel treatments for IBDs, such as fecal microbiota transplantation, when accepted by patients, have shown promising results. Controlled studies are being designed. In the near future, new therapeutic strategies can be expected, with non-pathogenic or modified food organisms that can be genetically modified to exert anti-inflammatory properties.