期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Online Computation Offloading and Trajectory Scheduling for UAV-Enabled Wireless Powered Mobile Edge Computing 被引量:1
1
作者 Han hu Xiang Zhou +1 位作者 Qun Wang rose qingyang hu 《China Communications》 SCIE CSCD 2022年第4期257-273,共17页
The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications a... The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications and services, anytime and anywhere. Wireless power transfer(WPT) is another promising technology to prolong the operation time of low-power wireless devices in the era of Internet of Things(IoT). However, the integration of WPT and UAV-enabled MEC systems is far from being well studied, especially in dynamic environments. In order to tackle this issue, this paper aims to investigate the stochastic computation offloading and trajectory scheduling for the UAV-enabled wireless powered MEC system. A UAV offers both RF wireless power transmission and computation services for IoT devices. Considering the stochastic task arrivals and random channel conditions, a long-term average energyefficiency(EE) minimization problem is formulated.Due to non-convexity and the time domain coupling of the variables in the formulated problem, a lowcomplexity online computation offloading and trajectory scheduling algorithm(OCOTSA) is proposed by exploiting Lyapunov optimization. Simulation results verify that there exists a balance between EE and the service delay, and demonstrate that the system EE performance obtained by the proposed scheme outperforms other benchmark schemes. 展开更多
关键词 energy efficiency mobile edge computing UAV-enabled wireless power transfer trajectorys cheduling
下载PDF
A Privacy-Preserving Scheme for Location-Based Services in the Internet of Vehicles
2
作者 Jiaqi huang Yi Qian rose qingyang hu 《Journal of Communications and Information Networks》 EI CSCD 2021年第4期385-395,共11页
Ubiquitous information exchange is achieved among connected vehicles through the increasingly smart environment.The concept of conventional vehicular ad hoc network is gradually transformed into the Internet of vehicl... Ubiquitous information exchange is achieved among connected vehicles through the increasingly smart environment.The concept of conventional vehicular ad hoc network is gradually transformed into the Internet of vehicles(IoV).Meanwhile,more and more locationbased services(LBSs)are created to provide convenience for drivers.However,the frequently updated location information sent to the LBS server also puts user location privacy at risk.Thus,preserve user location privacy while allowing vehicles to have high-quality LBSs is a critical issue.Many solutions have been proposed in the literature to preserve location privacy.However,most of them cannot provide real-time LBS with accurate location updates.In this paper,we propose a novel location privacy-preserving scheme,which allows vehicles to send accurate real-time location information to the LBS server while preventing being tracked by attackers.In the proposed scheme,a vehicle utilizes the location information of selected shadow vehicles,whose route diverge from the requester,to generate multiple virtual trajectories to the LBS server so as to mislead attackers.Simulation results show that our proposed scheme achieves a high privacy-preserving level and outperforms other state-of-the-art schemes in terms of location entropy and tracking success ratio. 展开更多
关键词 location privacy location-based service internet of vehicles vehicular networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部