The development of high-performance organic solar cells(OSCs)with high operational stability is essential to accelerate their commercialization.Unfortunately,our understanding of the origin of instabilities in state-o...The development of high-performance organic solar cells(OSCs)with high operational stability is essential to accelerate their commercialization.Unfortunately,our understanding of the origin of instabilities in state-of-the-art OSCs based on bulk heterojunction(BHJ)featuring non-fullerene acceptors(NFAs)remains limited.Herein,we developed NFA-based OSCs using different charge extraction interlayer materials and studied their storage,thermal,and operational stabilities.Despite the high power conversion efficiency(PCE)of the OSCs(17.54%),we found that cells featuring self-assembled monolayers(SAMs)as hole-extraction interlayers exhibited poor stability.The time required for these OSCs to reach 80%of their initial performance(T_(80))was only 6h under continuous thermal stress at 85℃in a nitrogen atmosphere and 1 h under maximum power point tracking(MPPT)in a vacuum.Inserting MoO_(x)between ITO and SAM enhanced the T_(80)to 50 and~15 h after the thermal and operational stability tests,respectively,while maintaining a PCE of 16.9%.Replacing the organic PDINN electron transport layer with ZnO NPs further enhances the cells'thermal and operational stability,boosting the T_(80)to 1000 and 170 h,respectively.Our work reveals the synergistic roles of charge-selective interlayers and device architecture in developing efficient and stable OSCs.展开更多
Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio ...Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio total energy calculations within the modified Becke-Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125-0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAIGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.展开更多
基金supported by the King Abdul ah University of Science and Technology(KAUST)office of Research Administration(ORA)under award No:OSR-CCF-3079 and OSR-2016-CRG5-3029the National Research Foundation of Korea(2019R1A6A1A11044070)
文摘The development of high-performance organic solar cells(OSCs)with high operational stability is essential to accelerate their commercialization.Unfortunately,our understanding of the origin of instabilities in state-of-the-art OSCs based on bulk heterojunction(BHJ)featuring non-fullerene acceptors(NFAs)remains limited.Herein,we developed NFA-based OSCs using different charge extraction interlayer materials and studied their storage,thermal,and operational stabilities.Despite the high power conversion efficiency(PCE)of the OSCs(17.54%),we found that cells featuring self-assembled monolayers(SAMs)as hole-extraction interlayers exhibited poor stability.The time required for these OSCs to reach 80%of their initial performance(T_(80))was only 6h under continuous thermal stress at 85℃in a nitrogen atmosphere and 1 h under maximum power point tracking(MPPT)in a vacuum.Inserting MoO_(x)between ITO and SAM enhanced the T_(80)to 50 and~15 h after the thermal and operational stability tests,respectively,while maintaining a PCE of 16.9%.Replacing the organic PDINN electron transport layer with ZnO NPs further enhances the cells'thermal and operational stability,boosting the T_(80)to 1000 and 170 h,respectively.Our work reveals the synergistic roles of charge-selective interlayers and device architecture in developing efficient and stable OSCs.
文摘Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as in future energy, especially in the fields of thermoelectrics and solar cells. We present ab fnitio total energy calculations within the modified Becke-Johnson generalized gradient approximation (mBJ-GGA) to obtain the physical properties of SrAlGa compounds. The structural, elastic, acoustic, electronic, chemical bonding, optical, and thermoelectric properties are calculated and compared with the available calculation data. The SrAlGa is found to be a small-band-gap (0.125-0.175 eV) material, suitable for thermoelectric applications with a relatively high Seebeck coefficient. Also, SrAIGa has the potential in the optoelectronic applications due to high optical conductivity and reflectivity in the infrared and visible region of electromagnetic spectra.