期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inhibition of mammalian target of rapamycin induces phenotypic reversion in three-dimensional cultures of malignant breast epithelial cells
1
作者 ross booth Soonjo Kwon Eric Monson 《Journal of Biomedical Science and Engineering》 2010年第5期476-483,共8页
Inhibition of mammalian target of rapamycin (m- TOR) is a potential method for cancer treatment. Effects of rapamycin (RAP) on the reversion of malignant breast epithelial cells were investigated on three-dimensional ... Inhibition of mammalian target of rapamycin (m- TOR) is a potential method for cancer treatment. Effects of rapamycin (RAP) on the reversion of malignant breast epithelial cells were investigated on three-dimensional (3D) basement membrane extract (BME) cultures. Through continuous exposure to 20 nM of RAP, cell colony size was significantly reduced in 3D BME cultures of malignant breast epithelial cells, while normal cell colony size appeared unaffected. In unfixed 3D BME cultures of normal and RAP-treated malignant breast epithelial cells, the presence of luminal cell death was confirmed by ethidium bromide and propidium iodide labeling. Increased structural organization was observed by im- munofluorescence staining of F-actin and β-catenin in RAP-treated malignant breast epithelial cells. In monolayer cultures of normal and malignant breast epithelial cells, continuous exposure to 20 nM of RAP increased caspase 3/7 activity and decreased proliferation. Reverse transcriptase polymerase ch- ain reaction (RT-PCR) array analysis indicated a fold increase in the expression of a number of proteins related to polarity, cell-cell adhesion, and cell-matrix adhesion in the presence of RAP. Our data showed that phenotypic reversion of malignancy can be ach- ieved through RAP exposure on 3D BME cultures. This 3D BME culture system will provide correct microenvironments for observing the effects of other mTOR inhibitors on phenotypic reversion of malignant breast epithelial cells. 展开更多
关键词 RAPAMYCIN Three-Dimensional Culture BREAST Cancer REVERSION BASEMENT Membrane Extract mTOR Inhibitors
下载PDF
Contrast enhancement methods in sodium MR imaging: a new emerging technique
2
作者 Rakesh Sharma Avdhesh Sharma +1 位作者 Soonjo Kwon ross booth 《Journal of Biomedical Science and Engineering》 2009年第6期445-457,共13页
Background: In the last decade, sodium mag-netic resonance imaging was investigated for its potential as a functional cardiac imaging tool for ischemia. Later interest was developed in contrast enhancement for intrace... Background: In the last decade, sodium mag-netic resonance imaging was investigated for its potential as a functional cardiac imaging tool for ischemia. Later interest was developed in contrast enhancement for intracellular sodium. Little success was reported to suppress extracellular sodium resulting in the intracellular sodium MRI image acquisition using quantum filters or sodium transition states as contrast properties. Now its clinical application is ex-panding as a new challenge in brain and other cancer tumors. Contrast enhancement: We highlight the physical principles of sodium MRI in three different pulse sequences using filters (single quantum, multiple quantum, and triple quantum) meant for sodium contrast enhancement. The optimization of scan parameters, i.e. times of echo delay (TE), inversion recovery (TI) periods, and utility of Dysprosium (DyPPP) shift contrast agents, enhances contrast in sodium MRI images. Inversion recovery pulse sequence without any shift reagent measures the intracellular sodium concentration to evaluate ischemia, apoptosis and membrane integrity. Membrane integrity loss, apoptosis and malignancy are results of growth factor loss and poor epithelial capability related with MRI visible intracellular sodium concentration. Applications and limitations: The sodium MR imaging technical advances reduced scan time to distinguish intracellular and extracellular sodium signals in malignant tumors by use of quantum filter techniques to generate 3D sodium images without shift regents. We observed the association of malignancy with increased TSC, and reduced apoptosis and epithelial growth factor in breast cancer cells. The validity is still in question. Conclusion: Different modified sodium MRI pulse sequences are research tools of sodium contrast enhancement in brain, cardiac and tumor imaging. The optimized MRI scan pa-rameters in quantum filter techniques generate contrast in intracellular sodium MR images without using invasive contrast shift agents. Still, validity and clinical utility are in 展开更多
关键词 SODIUM MRI Double QUANTUM INVERSION Recovery CONTRAST Enhancement Cancer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部